Задний мозг включает мост и мозжечок.

Мост (варолиев мост) снизу граничит с продолговатым мозгом, сверху проходит в ножки мозга, боковые его отделы образуют средние мозжечковые ножки.

Мозжечокрасполагается кзади от моста и от верхней части продолговатого мозга, заполняя большую часть задней черепной ямки. Мозжечок лежит на дорсальной поверхности ствола мозга, охватывает его с боков и при помощи ножек соединяется с его частями: верхние мозжечковые ножки соединяют мозжечок со средним мозгом, средние — с мостом; нижние — с продолговатым мозгом.

Мозжечок как надсегментарный орган входит в систему регуляции движений, выполняет следующие важные функции: 1) регуляцию позы и мышечного тонуса; 2) сенсомоторную координацию позы и целенаправленных движений; 3) координацию быстрых целенаправленных движений, осуществляемых по команде из коры больших полушарий.

В заднем мозге происходит замыкание дуг целого ряда соматических и вегетативных рефлексов, осуществляются цепные рефлексы, связанные с жеванием и глотанием. С функцией пищеварительного тракта связаны многие вегетативные рефлексы заднего мозга. К ним относится рефлекторная регуляция секреции слюнных желез.

Средний мозг состоит из крышы и ножки мозга. Полостью среднего мозга служит водопровод мозга. Нижней границей среднего мозга на его вентральной поверхности является передний край моста, верхней - зрительный тракт и уровень сосцевидных тел.

Функциональное значение среднего мозга заключается в том, что здесь находятся подкорковые центры слуха и зрения; ядра черепных нервов, обеспечивающие иннервацию поперечнополосатых и гладких мышц глазного яблока; ядра, относящиеся к экстрапирамидной системе, которые обеспечивают сокращение мышц тела во время автоматических движений. Кроме того, через средний мозг проходят нисходящие (двигательные) и восходящие (чувствительные) проводящие пути. Область среднего мозга является также местом расположения вегетативных центров и ретикулярной формации.

Промежуточный мозг. Расположен под мозолистым телом и сводом, срастается по бокам с полушариями большого мозга. Он представлен следующими отделами: 1) областью зрительных буфов (таламическая область); 2) гипоталамусом (подталамическая область); 3) III желудочком.

К таламической области относятся таламус (зрительный бугор), метаталамус (медиальное и латеральное коленчатые тела) и эпиталамус (шишковидное тело, поводки, спайки поводков и эпиталамическая спайка).

Таламус - парное образование овоидной формы, расположенное по сторонам III желудочка, фактически является подкорковым чувствительным центром, а его подушка - подкорковым зрительным центром. Метаталамус представлен латеральными и медиальными коленчатыми телами - парными образованиями, которые соединяются с холмиками крыши среднего мозга при помощи ручек верхнего и нижнего холмиков. Латеральное коленчатое тело вместе с верхними холмиками среднего мозга является подкорковым центром зрения. Медиальное коленчатое тело и нижние холмики среднего мозга образуют подкорковые центры слуха. Эпиталамус объединяет шишковидное тело (эпифиз), поводки и треугольники поводков.

Гипоталамус формирует нижние отделы промежуточного мозга, участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, сосцевидные тела, серый бугор с воронкой и гипофизом. Гипоталамус с гипофизом образует единый функциональный комплекс, в котором первый играет регулирующую роль, а второй — эффекторную.

3. Шок - определение, виды, причины, патогенез, симптомы, стадии и исходы.

Шок - это остроразвивающийся, угрожающий жизни патологический процесс, обусловленный действием на организм очень сильного раздражителя и характеризуется тяжёлыми нарушениями ЦНС, кровообращения, дыхания обмена веществ.

Стадии шока:

эректильная - характеризуется возбуждением структур головного мозга;

торпидная - резко снижается АД, сознание затемнено, но не утрачивается полностью, частота сердцебиения уменьшается, расстройство микроциркуляции, гипоксия, что приводит к дополнительному повреждению органов и тканей. Развивается "порочный круг": ЦНС ⇒ сердечно-сосудистая ⇒ дыхание ⇒ ЦНС ⇒ ...

Виды шока в зависимости от причин:

Травматический шок. Например, разрыв мышц, перелом костей, повреждение нервных окончаний. Признаки: пациент кричит, жестикулирует, мечется, зрачки расширены, сердцебиение учащено, АД высокое, реакция на любое воздействие усиливается. В дальнейшем нарастает угнетение речи, двигательной активности, нет реакции на раздражители, развиваются шоковые лёгкие и почки.

Ожоговый шок. Выраженность зависит от повреждённой площади кожи: до 50% - благоприятный прогноз, более 50% .

- неблагоприятный прогноз. Нарушается барьерная и инфекционная функции, шоковая почка, развивается ожоговая болезнь.

Анафилактический шок - самая грозная из аллергических реакций немедленного типа. Возникает при введении лечебных сывороток крови, вакцин и лёгких препаратов. Развивается быстро: проявляется двигательное возбуждение, чувство страха и беспокойства, зуд кожи, повышенная потливость, быстро развивается угнетение функций ЦНС, возможны судороги, чувство удушья в результате спазма. Вызывают яды насекомых, лекарственные препараты.

Гемотрансфузный шок - развивается после переливания крови. Реакция немедленная

Билет № 23.

1. Центральные и периферические органы кроветворения и иммунной защиты, их строение и функции. Иммунитет, виды и реакции.

Костный мозг - орган образования клеток крови. В нем формируются и размножаются стволовые клетки, которые дают начало всем видам клеток крови и иммунной системы. Поэтому костный мозг еще называют иммунным органом. Стволовые клетки обладают большой способностью к многочисленному делению и образуют самоподдерживающую систему.

Выделяют красный костный мозг, который расположен в губчатом веществе плоских и коротких костей, и желтый костный мозг, который заполняет полости диафизов длинных трубчатых костей. Красный костный мозг состоит из миелоидной ткани, включающей также ретикулярную и гемопоэтическую ткань, а желтый — из жировой ткани, которая заместила ретикулярную. При значительной кровопотере желтый костный мозг вновь замещается красным костным мозгом.

Селезенка выполняет функции периферического органа иммунной системы. Она расположена в брюшной полости, в области левого подреберья, на уровне от IX до XI ребер. В селезенке происходит разрушение эритроцитов, а также дифференцировка Т- и В-лимфоцитов.

Тимус, или вилочковая железа, относится к центральным органам лимфоцитопоэза и иммуногенеза. В тимусе стволовые клетки, поступающие из костного мозга, после ряда преобразований становятся Т-лимфоцитами. Последние отвечают за реакции клеточного иммунитета. Затем Т-лимфоциты поступают в кровь и лимфу, покидают тимус и переходят в тимусзависимые зоны периферических органов иммуногенеза. В тимусе эпителиальные клетки стромы вырабатывают тимозин (гемопоэтический фактор), который стимулирует пролиферацию лимфобластов. Кроме того, в тимусе вырабатываются и другие биологически активные вещества (факторы со свойствами инсулина, кальцитонина, факторы роста).

Расположен тимус в передней части верхнего средостения, впереди верхней части перикарда, дуги аорты, левой плечеголовной и верхней полой вен. Кроме иммунологической функции и функции кровообразования, тимусу свойственна также эндокринная деятельность.

Иммунитет- совокупность защитных свойств организма, направленных на сохранение своей биологической целостности и индивидуальности.Клеточный и гуморальный иммунитет. Приблизившись к бактериальной клетке, лейкоцит обволакивает ее и поглощает. Вокруг микробной клетки формируется окруженная мембраной вакуоль, куда лизосомы изливают свое содержимое, обеспечивающее разрушение клеточной стенки и всех структур бактериальной клетки. Процесс захвата и переваривания инородных агентов называется фагоцитозом, а клетки, которые могут осуществлять этот процесс, - фагоцитами.

В уничтожениипроникших микроорганизмов принимают активное участие и лимфоциты. В-лимфоциты после превращения в плазматические клетки вырабатывают антитела (иммуноглобулины).

Специфический и неспецифический иммунитет. Неспецифическая защита препятствует попаданию в организм всех патогенных бактерий и вирусов. Патогенный микроорганизм должен преодолеть барьер из нормальной микрофлоры человека (на коже и слизистых оболочках). Являясь безвредной для макроорганизма, микрофлора выступает в роли антагонистов для патогеных бактерий и вирусов. Следующим барьером служат кожа и слизистые оболочки. Вырабатываемые ими секреты, лизоцим, значительная толщина эпителия зачастую являются непреодолимым препятствием.

В организме вырабатывается особое вещество, способное блокировать развитие вирусов. Оно носит название интерферон.

Воспаление. После преодоления инфекционным агентом барьеров кожи и слизистых оболочек он сталкивается с тканевыми микро- и макрофагами. При этом на участке проникновения инфекционных агентов кровоток замедляется. Из крови в ткани выходят фагоциты-нейтрофилы (микрофаги), которые передвигаются к источнику инфекции и уничтожают основную массу микроорганизмов. Далее в ткани попадают моноциты - макрофаги, которые фагоцитируют оставшиеся бактерии и погибшие нейтрофилы. Как правило, этот процесс характеризуется либо местным, либо общим повышением температуры (гипертермией) и нарушением функции органа

2. Толстый кишечник человека, отделы, выполняемые функции. Анатомо-физиологическая характеристика толстого кишечника.

Толстая кишка - последний отдел пищеварительного тракта. Она состоит из: слепой кишки с червеобразным отростком, ободочной кишки и прямой кишки.

Слепая кишка расположена в правой подвздошной области, имеет форму полусферического мешка и длину 6—12 см. От нее отходит червеобразный отросток (аппендикс). Полость аппендикса,как правило, заполнена слизью. Стенка отростка содержит большоеколичество лимфоидных образований, играющих важную роль в становлении иммунитета.

В слепую кишку открывается подвздошная кишка. В этом месте находится своеобразный клапан, состоящий из двух складок слизистой оболочки. Этот клапан (Баугиниева заслонка) регулирует поступление содержимого подвздошной кишки в толстую и препятствует обратному его движению.

Ободочная кишка - наиболее длинный отдел толстой кишки. Она состоит из четырех отделов: восходящей, поперечной, нисходящей и сигмовидной ободочных кишок. Прямая кишка длиной 15 - 20 см, расположена в полости малого таза. По форме она образует два изгиба, расположенных в сагиттальной плоскости: крестцовый и промежностный. Нижняя часть прямой кишки прочно фиксирована в диафрагме таза. Прямая кишка состоит из надампулярной части, ампулы (расширенной части) и анального канала (суженной части). Заканчивается она анальным отверстием.

На выходе из прямой кишки находятся сфинктеры. Первый образован гладкой мускулатурой, и сокращения его происходят непроизвольно. Второй сфинктер, наружный, состоит из поперечнополосатой мускулатуры и является мышцей промежности. Его сокращения произвольные. Сфинктеры удерживают газы и каловые массы в просвете кишки.

Функции. Это основное место обитания кишечных бактерий (у взрослого человека преобладают палочки. Они способны переваривать вещества, не расщепленные ферментами пищеварительных соков, в частности клетчатку, которую они гидролизуют примерно на 50 %. Оставшаяся ее часть участвует в формировании каловых масс. Бактерии вырабатывают и токсичные для организма вещества: сероводород, индол, скатол, которые обезвреживаются в печени.

В толстой кишке происходит окончательное всасывание воды и минеральных солей. В ней происходит образование каловых масс, окрашенных пигментами желчи. Прямая кишка обеспечивает их выведение. С каловыми массами удаляются невсосавшиеся частицы пищи, бактерии, отслоившийся эпителий желудочно-кишечного тракта, вода (до 150 мл) и т. п.

При заполнении прямой кишки возникает позыв к дефекации. Сокращение мышц диафрагмы таза способствует эвакуации содержимого прямой кишки. Мышцы брюшного пресса повышают внутрибрюшинное давление, что также способствует изгнанию экскрементов. Сфинктеры прямой кишки расслабляются, и каловые массы удаляются из организма.

3. Нормотермия, гипотермия, гипертермия - определения и характеристика.

Гипотерми́я (от др.-греч. ὑπο «снизу, под» + θέρμη «тепло»), переохлаждение — состояние организма, при котором температура тела падает ниже, чем требуется для поддержания нормального обмена веществ и функционирования. Утеплокровных животных, в том числе, человека, температура тела поддерживается приблизительно на постоянном уровне благодаря биологическому гомеостазу. Но, когда организм подвергается воздействию холода, его внутренние механизмы могут оказаться не в состоянии пополнять потери тепла.

Состояние гипотермии является противоположностью гипертермии, которая приводит к тепловому удару.

ГИПОТЕРМИЯ И ГИПЕРТЕРМИЯ

Если человек длительное время находится в условиях значительно повышенной или пониженной температуры окружающей среды, то механизмы физической и химической регуляции тепла, благодаря которым в обычных условиях сохраняется постоянство температуре тела, могут оказаться недостаточными: происходит переохлаждение тела — гипотермия, или перегревание — гипертермия.

Гипотермия— состояние, при котором температура тела ниже 35 °С. Быстрее всего гипотермия возникает при погружении в холодную воду. В этом случае вначале наблюдается возбуждение симпатической части автономной нервной системы и рефлекторно ограничивается теплоотдача и усиливается теплопродукция. Последнему способствует сокращение мышц — мышечная дрожь. Через некоторое время температура тела все же начинает снижаться. При этом наблюдается состояние, подобное наркозу: исчезновение чувствительности, ослабление рефлекторных реакций, понижение возбудимости нервных центров. Резко понижается интенсивность обмена веществ, замедляется дыхание, урежаются сердечные сокращения, снижается сердечный выброс, понижается артериальное давление (при температуре тела 24—25°С оно может составлять 15—20 % от исходного).

Билет № 24.

1. Спинномозговые нервы: их образование, виды, количество. Ветви спинномозговых нервов. Поясничное и крестцовое сплетение: нервы, области иннервации

Спинномозговые нервы представляют собой парные, метамерно расположенные нервные стволы, которые созданы слиянием двух корешков спинного мозга — заднего (чувствительного) и переднего (двигательного) (рис. 133). На уровне межпозвоночного отверстия они соединяются и выходят, делясь на три или четыре ветви: переднюю, заднюю, менингеальную белую соединительные ветви; последние соединяются с узлами симпатического ствола. У человека находится 31 пара спинномозговых нервов, которые соответствуют 31 паре сегментов спинного мозга (8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 пара копчиковых нервов). Каждая пара спинномозговых нервов иннервирует определенный участок мышц (миотом), кожи (дерматом) и костей (склеротом). На основании этого выделяют сегментарную иннервацию мышц, кожи и костей

2. Группы крови. Резус-фактор. Агглютинация. Переливание крови.

Группы крови. Резус-фактор. Переливание крови

Группы крови системы АВО обозначаются римскими цифрами и дублирующим названием антигена:

I(0) - в эритроцитах нет агглютиногенов, но в плазме содержатся агглютинины

II(A) - агглютиногены А и агглютинины

III(B) - агглютиногены В и агглютинины

IV(AB) - в эритроцитах агглютиногены А и В, агглютининов в плазме нет.

В настоящее время обнаружено, что в эритроцитах I группы имеется слабый H-антиген. Агглютиногены А делятся на подтипы А1 и А2. Первый подтип встречается у 80% людей и обладает более выраженными антигенными свойствами. Реакций при переливании между кровью этих подгрупп не происходит.

Наследование группы крови осуществляется за счет генов А, В и О. В хромосомах человека содержится 2 из них. Гены А и В являются доминантными. Поэтому у родителей со II и III группой крови ребенок может иметь любую из 4-х групп:

ОО

АО

ОА + ОВ = ВО

АВ

Существует 6 разновидностeй резус-агглютиногенов: C, D, E, c, d, e. Наиболее выраженные антигенные свойства у резус-агглютиногена D. Именно им определяется резус-принадлежность крови. Другие антигены этой системы практического значения не имеют.

Переливание несовместимой крови вызывает тяжелейшее осложнение - гемотрансфузионный шок. Он возникает вследствие того, что склеившиеся эритроциты закупоривают мелкие сосуды. Кровоток нарушается. Затем происходит их гемолиз и из эритроцитов донора в кровь поступают чужеродные белки. В результате резко падает кровяное давление, угнетается дыхание, сердечная деятельность, нарушается работа почек, центральной нервной системы. Переливание даже небольших количеств такой крови может закончиться смертью реципиента.

В настоящее время допускается переливание только одногрупповой крови по системе АВО. Обязательно учитывается и ее резус-принадлежность. Поэтому перед каждым переливанием обязательно проводится определение группы и D-антигена крови донора и реципиента. Для определения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигенные свойства эритроцитов. Если ни в одной из сывороток не произошла агглютинация, следовательно в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. Если во всех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. Желательно проводить исследование и с сывороткой IV группы. Более точно группу крови можно определить с помощью стандартных эритроцитов I, II, III и IV групп. Для этого их смешивают с сывороткой исследуемой крови и определяют содержание в ней агглютининов. Резус принадлежность крови определяют путем ее смешивания с сывороткой, содержащей резус-агглютинины.

Кроме этого, чтобы избежать ошибки при определении группы крови и

наличия D-антигена, применяют прямую пробу. Она необходима и для выявления несовместимости крови по другим антигенным признакам. Прямую пробу производят путем смешивания эритроцитов донора с сывороткой реципиента при 370 С. При отрицательных результатах первые порции крови переливаются дробно.

Использовавшаясяраньше схема переливания крови разных групп, учитывающая содержание одноименных агглютининов и агглютиногенов сейчас не применяется. Это связано с тем, что агглютинины донорской крови вызывают агглютинацию и гемолиз эритроцитов реципиента.

Лимфа

Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосудам, проходит лимфатические узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1023 г/мм3. Вязкость 1,7, а рН около 9,0. Электролитный состав лимфы сходен с плазмой крови. Но в ней больше анионов хлора и бикарбоната. Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2.000-20.000 мкл 2-20 * 109 Л. Имеется и небольшое количество других лейкоцитов. Из них больше всего моноцитов. Эритроцитов в норме нет. Благодаря наличию в ней тромбоцитов, фибрина, факторов свертывания лимфа способна образовывать тромб. Однако время ее свертывания больше, чем у крови.

Лимфа выполняет следующие функции:

1. Поддерживает постоянство объема тканевой жидкости путем удаления ее избытка.

2. Перенос питательных веществ, в основном жиров, от органов пищеварения к тканям.

3. Возврат белка из тканей в кровь.

4. Удаление продуктов обмена из тканей.

5. Защитная функция. Обеспечивается лимфоузлами, иммуноглобулинами, лимфоцитами, макрофагами.

6. Участвует в механизмах гуморальной регуляции, перенося гормоны и другие ФАВ.

3. Специфическое (гранулематозное) воспаление - виды, этиология, патогенез, симптомы, течение и исходы.

Гранулематозное воспаление- форма хронической воспалительной реакции, при которой образуются узелки и диффузные тканевые инфильтраты, преобладающим типом клеток в инфильтратах являются клетки моноцитарно-макрофагального происхождения: макрофаги, эпителиоидные клетки, гигантские многоядерные клетки инородных тел и клетки Пирогова-Лангханса.

Этиология гранулематозного воспаления многообразна. Гранулематозное воспаление установленной этиологии вызывают как эндогенные, так и экзогенные факторы, которые в свою очередь могут иметь инфекционную и неинфекционную природу. К экзогенным факторам, вызывающим образование гранулем, относят биологические (бактерии, грибы, простейшие, гельминты), органические и неорганические вещества (пыли, дымы и т. п.),лекарства (гранулематозный гепатит). К эндогенным факторам относят труднорастворимые продукты поврежденных тканей, особенно жировой ткани (мыла), а также продукты нарушенного обмена, такие как ураты.

Среди инфекционных агентов, вызывающих гранулематозное воспаление, выделяют банальные и специфические (туберкулезная микобактерия, бледная трепонема, лепрозная микобактерия, палочка риносклеромы).

Однако в ряде случаев этиология грамулематозного воспаления остается неустановленной. К гранулемам неустановленной этиологии относят гранулемы при саркоидозе, болезни Крона, первичном билиарном циррозе и др.

Морфогенез гранулемыскладывается из 4 стадий:

1) накопление в очаге повреждения ткани моноцитов;

созревание этих клеток в макрофаги и образование макрофагальной гранулемы;

2) трансформация макрофагов в эпителиоидные клетки и образование эпителиоидноклеточной гранулемы;

3) трансформация эпителиоидных клеток в гигантские (Пирогова-Лангханса и или инородных тел) и формирование гигантоклеточных гранулем.

Таким образом, учитывая состав гранулемы, по морфологическим признакам различают 3 вида гранулем: макрофагальную (простую или фагоцитому); эпителиоидноклеточную и гигантоклеточную.

Билет № 25.

1. Почка человека, функции, анатомо-физиологическая характеристика. Строение нефрона и механизмы диуреза. Состав и суточное количество мочи.

Почки у млекопитающих имеют бобовидную форму, за исключением крупного рогатого скота. В почке имеется выпуклый наружный край и вогнутый внутренний край, в центре которого находятся ворота почки. В этом месте в почку входят артерия, нервы, выходят вена, лимфатические сосуды и мочеточник. На продольном разрезе почка делится на две большие зоны: наружную, корковое вещество почки и внутреннюю, мозговое вещество почки. Основной структурно-функциональной единицей почки является нефрон. Нефрон состоит из нескольких последовательно соединённых отделов, располагающихся в корковом и мозговом веществе почки

Строение нефрона.

1. Мальпигиев клубочек

2. Капсула Шумлянскоо – Боумена

3. Проксимальный извитой каналец

4. Нисходящая тонкая часть петли Генле

5. Тонкая восходящая часть петли Генле

6. Толстая восходящая часть петли Генле

7. Дистальный извитой каналец

9. Собирательная трубочка

Почечное тельце состоит из компактного пучка переплетённых капиллярных петель, окружённых двухслойной полой капсулой Шумлянского-Боумена. Внешний листок капсулы переходит в проксимальный сегмент нефрона, состоящий из извитой и прямой частей. Особенностью клеток проксимального извитого канальца является наличие щёточной каймы из большого количества микроворсинок, покрытых гликокаликсом. Следующий за проксимальным прямым канальцем сегмент – нисходящая тонкая часть петли Генле. Она заканчивается шпилькообразным коленом петли, и каналец дальше поднимается параллельно нисходящей части. Тонкая восходящая часть петли Генле переходит в толстую восходящую часть, клетки которой лишены микроворсинок. Вблизи от клубочка толстый восходящий отдел петли переходит в дистальный извитой каналец. За дистальным извитым канальцем следует связующий каналец, затем собирательные трубочки и система Беллиниевых протоков.

2. Лимфа, её образование и состав. Механизмы движения лимфы. Взаимопревращения лимфы, крови и тканевой жидкости.

Лимфа(от греч. – чистая вода) – жидкая ткань, содержащаяся в л/сосудах и л/узлах человека.Это бесцветная жидкость щелочной реакции, отличающаяся от плазмы меньшим содержанием белка (в среднем 2%; в печени – 6%, в жкт – 3-4%).

В лимфе имеется - протромбин и фибриноген, поэтому она свертывается,

- глюкоза (4,44-6,67 ммоль/л, или 80-120мг%),

- минеральные соли (около 1%),

- лимфоциты - 2 – 20 тысяч в 1 мкл лимфы.

Наши рекомендации