А) Функции лимфатической системы

Общая вода, жидкости организма и жидкости внутренней среды

Человеческий организм в основном состоит из воды.

Общее содержание воды в организме обозначается как общая вода тела, тотальная вода.

Её относительное содержание изменяется с возрастом от 75 % у новорожденного до 55 % у пожилых людей ].

У женщин относительное содержание воды меньше, чем у мужчин процентов на 5 % (65 и 60).

Баланс воды (поступление, образование, циркуляция, участие в обмене веществ, выведение) – тема других лекций, посвященных водно-солевому обмену.

Вода – основа всех жидких сред.

Жидкости организма разделены на следующие компартменты

1. Внутриклеточная (интрацеллюлярная) жидкость

2. Внеклеточная (экстрацеллюлярная) жидкость

2.1. Интравазальная жидкость

2.1.1. Плазма крови

2.1.2. Лимфа

2.2. Экстравазальная жидкость

2.2.1. Межклеточная жидкость (син.: тканевая, интерстициальная)

2.2.2. Кристаллизационная (структурированная) вода кости и хряща (15 % всей воды организма)

2.2.3. Трансцеллюлярные (специализированные) жидкости

2.2.3.1 Жидкости закрытых полостей (т.е. не имеющих прямого сообщения с внешней средой).

a. Ликвор (синонимы – цереброспинальная или спинно-мозговая жидкость)

b. Синовиальная (внутрисуставная) жидкость

c. Смазка серозных оболочек (брюшина, плевра, перикард)

d. Жидкие среды глазного яблока

e. Жидкие среды внутреннего уха

2.2.3.2 Жидкости открытых полостей

a. Секреты пищеварительных желёз (слюна, желудочный сок, жёлчь, сок поджелудочной железы, кишечный сок)

b. Увлажняющие жидкости (дыхательные пути, среднее и наружное ухо).

2.2.3.3 Жидкости, выделяемые из организма (моча, пот, слезы, молоко)

Обратите внимание! Жидкость форменных элементов крови - это внутриклеточная вода, поэтому к внеклеточной жидкости относится плазма крови, а не вся кровь.

К жидкостям внутренней средой организма относят :

1. кровь,

2. лимфу,

3. тканевую (межклеточную) жидкость.

Однако, следует включать в эту совокупность и специализированные жидкости.

Подробнее о ликворе см. [++601++] C.129-130.

В мозге различают цереброспинальную жидкость и межклеточную жидкость (внеклеточные пространства мозга). Не отождествляйте эти понятия!

Под специализированными жидкостями чаще подразумевают жидкости закрытых полостей организма. Не следует забывать и о жидкостях открытых полостей организма. Все эти жидкости принимают участие в поддержании гомеостаза организма. Как Вы будете себя чувствовать при ответе, если во рту пересохнет?

Как правило, подчеркивают особую роль тканевой жидкости, поскольку лишь она контактирует с клетками организма. Её называют истинной внутренней средой организма. Есть мнение, что основой внутренней среды является кровь, а непосредственной питательной средой – тканевая жидкость

Иногда клетка непосредственно (без посредничества тканевой жидкости) контактирует и осуществляет обмен с другими жидкостями внутренней среды. Например, кровь, соприкасаясь непосредственно с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность.

Интерстиций (интерстициальное пространство) (лат. Interstitium промежуток, щель) – составная часть соединительной ткани и имеет довольно сложную структуру.

Лимфа и лимфообращение.

Строение лимфатической системы Лимфатическая система человека и теплокровных животных со­стоит из следующих образований: 1) лимфатических капилляров, представляющих собой замкнутые с одного конца эндотелиальные трубки, пронизывающие практически все органы и ткани; 2) внутриорганных сплетений посткапилляров и мелких, снабженных кла­панами, лимфатических сосудов; 3) экстраорганных отводящих лим­фатических сосудов, впадающих в главные лимфатические стволы, прерывающихся на своем пути лимфатическими узлами; 4) главных лимфатических протоков — грудного и правого лимфатического, впадающих в крупные вены шеи. Лимфатические капилляры и посткапилляры представляют собой часть лимфатической системы; в них под влиянием изменяющихся градиентов гидростатического и коллоидно-осмотического давлений происходит образование лим­фы. Стенки лимфатических капилляров и посткапилляров представ­лены одним слоем эндотелиальных клеток, прикрепленных с по­мощью коллагеновых волокон к окружающим тканям. В стенке лимфатических капилляров между эндотелиальными клетками име­ется большое количество пор, которые при изменении градиента давления могут открываться и закрываться. Внутри- и внеорганные лимфатические сосуды, лимфатические стволы и протоки выполняют преимущественно транспортную функцию, обеспечивая доставку об­разовавшейся в лимфатической системе лимфы в систему кровенос­ных сосудов. Лимфатические сосуды являются системой коллекторов, представляющих собой цепочки лимфангионов. Лимфангион явля­ется морфофункциональной единицей лимфатических сосудов и со­стоит из мышечной «манжетки», представленной спиралеобразно расположенными гладкими мышечными клетками и двух клапа­нов — дистального и проксимального. Крупные лимфатические со­суды конечностей и внутренних органов сливаются в грудной и правый лимфатический протоки. Из протоков лимфа поступает через правую и левую подключичную вены в общий кровоток.

А) Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мочи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения — лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Б) Образование лимфы

Лимфа — жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тканевой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте — 4,1%, сердце — 4,4%, в печени достигает 6,2%.

С) Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2—3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

Д) Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150—180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы — периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях — увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.[2]

Переливание крови и ее производных зачастую остается единственным способом спасения жизни человека, перенесшего сильную кровопотерю. Но и службы скорой медицинской помощи, и реанимационные отделения больниц зачастую не могут его использовать из-за недостатка донорской крови.

Тем не менее, врачи не перестают надеяться, что когда-нибудь ситуация изменится к лучшему. А основания для надежды дают так называемые кровезаменители - искусственные препараты, имитирующие человеческую кровь.

Кровезамещающей жидкостью называется физически однородная трансфузионная среда с целенаправленным действием на организм, способная заменить определенную функцию крови. Смеси различных кровезамещающих жидкостей или - последовательное их применение могут воздействовать на организм комплексно.

Кровезамещающие жидкости должны отвечать следующим требованиям:

1) быть схожими по физико-химическим свойствам с плазмой крови;

2) полностью выводиться из организма или метаболизироваться ферментными системами;

3) не вызывать сенсибилизации организма при повторных введениях;

4) не оказывать токсического действия на органы и ткани;

5) выдерживать стерилизацию автоклавированием, в течение длительного срока сохранять свои физико-химические и биологические свойства.

1. Классификация кровезаменителей

В зависимости от направленности действия кровезамещающие жидкости классифицируют следующим образом.

1) препараты противошокового действия;

2) препараты дезинтоксикационного действия;

3) препараты для парентерального питания. Многие кровезаменители обладают комплексным действием.

Существующие заменители крови можно разделить на две группы:

  1. естественные заменители, являющиеся препаратами человеческой крови (нативная и сухая плазма и сыворотка крови, альбумин сыворотки крови человека);
  2. искусственные плазмозаменяющие средства.

Заменители плазмы и других компонентов крови предназначены для восполнения ОЦК, сохранения ее агрегатного состояния, замещения определенных функций крови (лейкоцитарная масса, препараты плазмы, концентрат тромбоцитов), поддержания водно-электролитного баланса, онкотического давления крови, коррекции КЩС. Препараты этой группы используются и в качестве детоксицирующих средств (см. Детоксицирующие средства, включая антидоты), обладающих способностью связывать различные токсические вещества и ускорять их выведение из организма, а также уменьшать агрегацию форменных элементов крови в капиллярах.

Собственно плазмозаменители выполняют лишь одну функцию — поддержание необходимого ОЦК. Они должны отвечать ряду требований:

- не проходить через гистогематические барьеры и не проникать из сосудов в ткани;

- поддерживать достаточное и стабильное осмотическое давление;

- иметь минимальный и пролонгированный метаболизм, сопровождающийся образованием нейтральных продуктов или метаболитов, включающихся в обычные реакции обмена, либо интенсивно фильтрующихся с мочой;

- не обладать антигенными свойствами и пирогенностью.

К заменителям плазмы относятся плазма донорской крови (естественныйплазмозаменитель), декстраны и растворы солей электролитов (растворы кристаллоидов).

Плазма содержит все компоненты жидкой части крови человека, но требует особых способов хранения и небезразлична для донорского организма в антигенном отношении.

Декстраны — растворы полисахаридов из культур ряда бактерий, лишенных антигенных свойств. Декстраны могут иметь различную степень полимеризации и соответственно разную молекулярную массу; из них могут быть получены плазмозамещающие растворы различного функционального назначения. Растворы, содержащие декстраны с высокой молекулярной массой, используются, главным образом, в качестве гемодинамических средств, а с меньшей молекулярной массой — как корректоры реологических свойств крови. При введении в ток крови декстраны увеличивают онкотическое давление и усиливают процессы перемещения жидкости из тканей в кровяное русло. Они повышают диурез, чем способствуют процессам детоксикации. Подвергаясь в организме частичному гидролизу, декстраны выводятся в основном почками (почечная недостаточность является ограничением к их применению).

Растворы кристаллоидов (Рингера, Рингера-ацетат, Хартмана) содержат различные комбинации солей (натрия хлорид, натрия гидрокарбонат, натрия ацетат, кальция хлорид, калия хлорид), а также глюкозу в концентрациях, близких к физиологическим. Действие солевых растворов направлено на коррекцию дегидратации, содержания электролитов, концентрации ионов водорода и, соответственно, КЩС (см. Регуляторы водно-электролитного баланса и КЩС). При отсутствии значительных потерь электролитов для коррекции гиповолемии вводят 5% (изотонический) раствор декстрозы.

Ряд патологических состояний (непроходимость пищевода, нарушение всасывания из кишечника, тяжелые интоксикации и др.), операции на желудке и кишечнике обусловливают необходимость парентерального введения питательных веществ, в первую очередь белков. Плазмозамещающие средства (альбумин 20–25%, декстроза 20–50% растворы) могут применяться в таких ситуациях как препараты для парентерального питания (см. Средства для энтерального и парентерального питания). Белки (см. Белки и аминокислоты) субстратно обеспечивают многие ферментные процессы, декстроза — энергетический обмен. Однако следует учитывать, что парентеральное введение белков может приводить к сенсибилизации организма с развитием анафилактических реакций при повторных инъекциях.

Заменители плазмы и других компонентов крови применяются главным образом для лечения и профилактики шока различного происхождения, нормализации АД и улучшения гемодинамических показателей. Они используются при кровопотере, ожогах, других состояниях, сопровождающихся дегидратацией и гиповолемией, для профилактики послеоперационной и посттравматической тромбоэмболии, при интоксикациях различного генеза. Препараты декстрозы (20–40% раствор) применяются также для коррекции гипогликемических состояний. С целью парентерального питания эти препараты используются для обеспечения текущих энергозатрат организма и регенеративных процессов в клетках, когда питание естественным путем по ряду причин невозможно.

Иммунологические реакции используются для выявления специфических антител, идентификации возбудителей и других антигенов, определения групп крови и подбора адекватного донора при пересадках органов и тканей.

Клетки одного типа (В-клетки) происходят из костного мозга и при встрече с антигеном превращаются в клетки, образующие антитела (плазматические клетки). Клетки другого типа (Т-клетки) происходят из тимуса. Им свойственна способность специфически реагировать на антигенные молекулы и обеспечивать взаимодействие В-клеток с антигеном.

В иммунологически зрелом (иммунокомпетентном) организме фагоцитирующие клетки и Т- и В-лимфоциты осуществляют все формы специфического ответа: образуют циркулирующие антитела, относящиеся к разным классам иммуноглобулинов, реализуют иммунные реакции клеточного типа - замедленную повышенную чувствительность, отторжение трансплантата и др. Так организм отвечает на ряд бактериальных и паразитарных инвазий (туберкулёз, бруцеллёз, лейшманиоз), а также на пересадку клеток и тканей от другого организма. Дифференцировка и взаимодействие этих клеток под влиянием антигена могут привести к возникновению иммунологической "памяти" или специфической иммунологической толерантности.

У большинства млекопитающих иммунные реакции развиваются в полной мере только после рождения. Во время эмбрионального развития, когда зародыш защищен от действия антигенов, функционирует система избирательного переноса иммуноглобулинов от матери к плоду. Однако к 4-5 месяцам плод человека самостоятельно образует иммуноглобулины М и G. Птицы и млекопитающие, в том числе человек, обладают одинаковым спектром иммунологических реакций. Степень иммунореактивности связана с возрастом и заметно снижается по мере старения организма.

Физиология иммунных реакций изучает механизмы, с помощью которых организм обнаруживает и удаляет "чужое" - вещества, не являющиеся нормальными компонентами его собственных тканей: мёртвые и злокачественно перерожденные клетки, собственные поврежденные молекулы, чужеродные клетки и молекулы, бактерии, вирусы, простейшие, гельминты и их яды и т. п. Функциональным выражением чужеродности антигена является его способность вызывать образование специфических антител и соединяться с ними. Природа антигенности, вопрос о том, почему организм, не вырабатывая антитела на громадное множество собственных молекул, образует антитела к бесконечному числу чужеродных антигенов, сущность специфического иммунного ответа, в частности синтеза антител, являются главными вопросами так называемой теории образования антител. Предполагают, что образование антител, т. е. биосинтез высокоспециализированных белковых молекул, осуществляется подобно синтезу других белков плазмы крови.

Общая теория иммунологических реакций должна объяснить физико-химическую природу антигенности, описать молекулярные механизмы синтеза антител и расшифровать иммунохимическую специфичность. Создание такой теории возможно при последовательном решении трёх важнейших и взаимосвязанных проблем иммунного ответа:

Наши рекомендации