Машинное представление связных линейных списков
Лекции №7
ДИНАМИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ. СВЯЗНЫЕ СПИСКИ
Связное представление данных в памяти
Динамические структуры по определению характеризуются отсутствием физической смежности элементов структуры в памяти непостоянством и непредсказуемостью размера (числа элементов) структуры в процессе ее обработки.
Поскольку элементы динамической структуры располагаются по непредсказуемым адресам памяти, адрес элемента такой структуры не может быть вычислен из адреса начального или предыдущего элемента. Для установления связи между элементами динамической структуры используются указатели, через которые устанавливаются явные связи между элементами. Такое представление данных в памяти называется связным. Элемент динамической структуры состоит из двух полей:
- информационного поля или поля данных, в котором содержатся те данные, ради которых и создается структура; в общем случае информационное поле само является интегрированной структурой - вектором, массивом, записью и т.п.;
- поле связок, в котором содержатся один или несколько указателей, связывающий данный элемент с другими элементами структуры;
Когда связное представление данных используется для решения прикладной задачи, для конечного пользователя "видимым" делается только содержимое информационного поля, а поле связок используется только программистом-разработчиком.
Достоинства связного представления данных - в возможности обеспечения значительной изменчивости структур;
- размер структуры ограничивается только доступным объемом машинной памяти;
- при изменении логической последовательности элементов структуры требуется не перемещение данных в памяти, а только коррекция указателей.
Вместе с тем связное представление не лишено и недостатков, основные из которых:
- работа с указателями требует, как правило, более высокой квалификации от программиста;
- на поля связок расходуется дополнительная память;
- доступ к элементам связной структуры может быть менее эффективным по времени.
Последний недостаток является наиболее серьезным и именно им ограничивается применимость связного представления данных. Если в смежном представлении данных для вычисления адреса любого элемента нам во всех случаях достаточно было номера элемента и информации, содержащейся в дескрипторе структуры, то для связного представления адрес элемента не может быть вычислен из исходных данных. Дескриптор связной структуры содержит один или несколько указателей, позволяющих войти в структуру, далее поиск требуемого элемента выполняется следованием по цепочке указателей от элемента к элементу. Поэтому связное представление практически никогда не применяется в задачах, где логическая структура данных имеет вид вектора или массива - с доступом по номеру элемента, но часто применяется в задачах, где логическая структура требует другой исходной информации доступа (таблицы, списки, деревья и т.д.).
Связные линейные списки
Списком называется упорядоченное множество, состоящее из переменного числа элементов, к которым применимы операции включения, исключения. Список, отражающий отношения соседства между элементами, называется линейным. Логические списки мы уже рассматривали в главе 4, но там речь шла о полустатических структурах данных и на размер списка накладывались ограничения. Если ограничения на длину списка не допускаются, то список представляется в памяти в виде связной структуры. Линейные связные списки являются простейшими динамическими структурами данных.
Графически связи в списках удобно изображать с помощью стрелок. Если компонента не связана ни с какой другой, то в поле указателя записывают значение, не указывающее ни на какой элемент. Такая ссылка обозначается специальным именем - nil.
Машинное представление связных линейных списков
На рис. 5.1 приведена структура односвязного списка. На нем поле INF - информационное поле, данные, NEXT - указатель на следующий элемент списка. Каждый список должен иметь особый элемент, называемый указателем начала списка или головой списка, который обычно по формату отличен от остальных элементов. В поле указателя последнего элемента списка находится специальный признак nil, свидетельствующий о конце списка.
Однако, обработка односвязного списка не всегда удобна, так как отсутствует возможность продвижения в противоположную сторону. Такую возможность обеспечивает двухсвязный список, каждый элемент которого содержит два указателя: на следующий и предыдущий элементы списка. Структура линейного двухсвязного списка приведена на рис. 5.2, где поле NEXT - указатель на следующий элемент, поле PREV - указатель на предыдущий элемент. В крайних элементах соответствующие указатели должны содержать nil, как и показано на рис. 5.2.
Для удобства обработки списка добавляют еще один особый элемент - указатель конца списка. Наличие двух указателей в каждом элементе усложняет список и приводит к дополнительным затратам памяти, но в то же время обеспечивает более эффективное выполнение некоторых операций над списком.
Разновидностью рассмотренных видов линейных списков является кольцевой список, который может быть организован на основе как односвязного, так и двухсвязного списков. При этом в односвязном списке указатель последнего элемента должен указывать на первый элемент; в двухсвязном списке в первом и последнем элементах соответствующие указатели переопределяются, как показано на рис.5.3.
При работе с такими списками несколько упрощаются некоторые процедуры, выполняемые над списком. Однако, при просмотре такого списка следует принять некоторых мер предосторожности, чтобы не попасть в бесконечный цикл.