Образовательные ткани, или меристемы 3 страница
Рис. 3.22. Пластинчатая колленхима на поперечном срезе.
Рыхлая колленхима имеет хорошо выраженные межклетники. Утолщению подвергаются лишь те части стенок, которые прилегают к межклетным пространствам (рис. 3.23 ). Рыхлая колленхима встречается у некоторых травянистых растений (лопух, дурман). Она сочетает признаки уголковой колленхимы и аэренхимы.
Рис. 3.23. Рыхлая колленхима на поперечном срезе.
Склеренхима встречается наиболее часто, во всех органах: корнях, стеблях, листьях, плодах, цветках, семенах. Клетки склеренхимы имеют равномерно утолщенные и, как правило, одревесневшие стенки. Полость клетки мала, поры простые, щелевидные, немногочисленные. Протопласт, как правило, рано отмирает, и опорную функцию выполняют мертвые клетки. Различают два типа склеренхимы: 1) волокна и 2) склереиды, различающиеся формой клеток.
Волокна – прозенхимные клетки, сильно вытянутые в длину и заостренные на концах. Они обеспечивают прочность органов растений на растяжение, сжатие и изгибы. Прочность волокон повышается благодаря тому, что фибриллы целлюлозы проходят в них винтообразно, меняя направление во внешних и внутренних витках.
Волокна, расположенные в коровой части осевого органа (во флоэме), называются лубяными. Их длина сильно колеблется: у льна - 40-60 мм, у кендыря – 2-55 мм, а у рами – 350-420 мм. Лубяные волокна с неодревесневающей клеточной стенкой являются ценным сырьем для текстильной промышленности (лен, рами, кенаф). Волокна, находящиеся в древесине (ксилеме), называются древесинными,или волокнами либриформа. Их стенки всегда одревесневшие, длина их не превышает 2 мм. В растениях также часто присутствуют волокна, не связанные с проводящими тканями (листья однодольных).
Склереиды – клетки, имеющие различную форму, чаще паренхимную. Они встречаются как поодиночке, в виде идиобластов, так и группами. Это мертвые клетки с очень толстыми одревесневшими стенками, пронизанными поровыми каналами, которые часто ветвятся (рис. 3.24 ). В зависимости от формы клеток выделяют несколько типов склереид. Наиболее часто встречаются брахисклереиды, или каменистые клетки и астросклереиды.
Каменистые клетки имеют более или менее округлую форму (рис. 3.24 ). Из них состоят косточки вишни, сливы, персика, скорлупа грецкого ореха. Они встречаются в мякоти плодов груши, айвы, рябины, в корнях хрена среди тонкостенных клеток. У груши при созревании плода наблюдается раздревеснение каменистых клеток.
Рис. 3.24. Каменистые клетки околоплодника груши.
Астросклереиды имеют ветвистую форму с отростками, направленными в разные стороны (рис. 3.25). Они располагаются в виде идиобластов в мезофилле листьев некоторых растений (камелия, маслина, кубышка), скрепляя рыхлые ткани подобно шпильке в волосах.
Рис. 3.25. Астросклереида кубышки.
Проводящие ткани
Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях. По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток). По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веще ств по флоэме называют током ассимилятов.
Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.
Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом. Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.
Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов - древесинных волокон (волокон либриформа) и элементов основной ткани - древесинной паренхимы.
Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов – трахеиды и членики сосудов (рис. 3.26 ).
Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.
Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).
Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.
Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными и точечно-поровыми (рис. 3.27).
Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов : 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.
Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27 ) можно рассматривать как морфогенетический, эволюционный ряд.
Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.
В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.
Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.
Флоэма (луб) состоит из проводящих - ситовидных - элементов, сопровождающих клеток (клеток-спутниц), механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы.
В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий – ситовидные поля, через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок.
Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.
У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки(рис. 3.28 ). Они состоят из многих отдельных клеток – члеников, расположенных один над другим. Ситовидные поля двух соседних члеников образуют ситовидную пластинку. Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).
В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.
Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.
Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.
Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.
В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называют проводящимипучками. Различают несколько типов проводящих пучков (рис. 3.29 ).
Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.
В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычны коллатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным. Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).
Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным, или амфивазальным. Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным, или амфикрибральным. Центроксилемные пучки обычны у папоротников.
Рис. 3.29. Типы проводящих пучков : 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.
Многие авторы выделяют радиальные пучки. Ксилема в таком пучке располагается в виде лучей от центра по радиусам, а флоэма – между лучами ксилемы. Радиальный пучок – характерный признак корня первичного строения.
Механические ткани
Механические (скелетные, опорные, арматурные) ткани выполняют в растении роль скелета, который скрепляет ткани и части органов между собой. Они придают растениям прочность, способность противостоять действию тяжести собственных органов, порывам ветра, дождю, снегу, вытаптыванию животными. Клетки механических тканей разнообразны по форме, но имеют общий признак – сильно утолщенные клеточные стенки, которые даже после отмирания протопласта продолжают выполнять опорную функцию. Различают два типа механических тканей: 1) колленхиму и 2) склеренхиму.
Колленхима – механическая ткань молодых растущих органов, возникает очень рано, когда еще продолжается рост органа в длину. Колленхима состоит из живых, вытянутых по оси органа клеток с тупыми или скошенными концами. В клетках часто содержатся хлоропласты. Клеточные стенки утолщены неравномерно и никогда не одревесневают. Граница между первичной и вторичной стенками не выражена, в утолщениях чередуются слои целлюлозы и сильно обводненные слои, богатые пектинами и гемицеллюлозами. В растущем органе стенки клеток должны сохранять способность к растяжению, что возможно только в живых клетках. Функции опорной ткани колленхима может выполнять только в состоянии тургора. Если растение теряет воду, тонкие участки клеточных стенок складываются «гармошкой», побеги теряют упругость и обвисают.
Колленхима располагается сразу за покровной тканью в молодых стеблях, цветоносах, черешках листьев, образуя сплошной цилиндр или тяжи в ребрах. В корнях колленхима обычно не встречается. Наиболее характерна колленхима для двудольных, у однодольных растений она встречается редко.
В зависимости от характера утолщения стенок клеток различают три типа колленхимы: 1) уголковую, 2) пластинчатую и 3) рыхлую.
Уголковая колленхима имеет стенки, утолщенные в углах клеток. Утолщения стенок соседних клеток смыкаются, образуя трех – пятиугольники (рис. 3.21). Уголковая колленхима часто встречается в стеблях травянистых растений, черешках листьев, вдоль главной жилки листа.
Рис. 3.21. Уголковая колленхима на поперечном срезе листового черешка свеклы.
Пластинчатая колленхима имеет утолщения тангенциальных, т. е. параллельных поверхности органа, стенок клеток, которые располагаются параллельными слоями, радиальные стенки остаются тонкими (рис. 3.22 ). Она встречается, чаще всего, в молодых стеблях древесных растений.
Рис. 3.22. Пластинчатая колленхима на поперечном срезе.
Рыхлая колленхима имеет хорошо выраженные межклетники. Утолщению подвергаются лишь те части стенок, которые прилегают к межклетным пространствам (рис. 3.23 ). Рыхлая колленхима встречается у некоторых травянистых растений (лопух, дурман). Она сочетает признаки уголковой колленхимы и аэренхимы.
Рис. 3.23. Рыхлая колленхима на поперечном срезе.
Склеренхима встречается наиболее часто, во всех органах: корнях, стеблях, листьях, плодах, цветках, семенах. Клетки склеренхимы имеют равномерно утолщенные и, как правило, одревесневшие стенки. Полость клетки мала, поры простые, щелевидные, немногочисленные. Протопласт, как правило, рано отмирает, и опорную функцию выполняют мертвые клетки. Различают два типа склеренхимы: 1) волокна и 2) склереиды, различающиеся формой клеток.
Волокна – прозенхимные клетки, сильно вытянутые в длину и заостренные на концах. Они обеспечивают прочность органов растений на растяжение, сжатие и изгибы. Прочность волокон повышается благодаря тому, что фибриллы целлюлозы проходят в них винтообразно, меняя направление во внешних и внутренних витках.
Волокна, расположенные в коровой части осевого органа (во флоэме), называются лубяными. Их длина сильно колеблется: у льна - 40-60 мм, у кендыря – 2-55 мм, а у рами – 350-420 мм. Лубяные волокна с неодревесневающей клеточной стенкой являются ценным сырьем для текстильной промышленности (лен, рами, кенаф). Волокна, находящиеся в древесине (ксилеме), называются древесинными,или волокнами либриформа. Их стенки всегда одревесневшие, длина их не превышает 2 мм. В растениях также часто присутствуют волокна, не связанные с проводящими тканями (листья однодольных).
Склереиды – клетки, имеющие различную форму, чаще паренхимную. Они встречаются как поодиночке, в виде идиобластов, так и группами. Это мертвые клетки с очень толстыми одревесневшими стенками, пронизанными поровыми каналами, которые часто ветвятся (рис. 3.24 ). В зависимости от формы клеток выделяют несколько типов склереид. Наиболее часто встречаются брахисклереиды, или каменистые клетки и астросклереиды.
Каменистые клетки имеют более или менее округлую форму (рис. 3.24 ). Из них состоят косточки вишни, сливы, персика, скорлупа грецкого ореха. Они встречаются в мякоти плодов груши, айвы, рябины, в корнях хрена среди тонкостенных клеток. У груши при созревании плода наблюдается раздревеснение каменистых клеток.
Рис. 3.24. Каменистые клетки околоплодника груши.
Астросклереиды имеют ветвистую форму с отростками, направленными в разные стороны (рис. 3.25). Они располагаются в виде идиобластов в мезофилле листьев некоторых растений (камелия, маслина, кубышка), скрепляя рыхлые ткани подобно шпильке в волосах.
Рис. 3.25. Астросклереида кубышки.
Корень и корневые системы
Корень– основной вегетативный орган растения, выполняющий в типичном случае функцию почвенного питания. Корень – осевой орган, обладающий радиальной симметрией и неопределенно долго нарастающий в длину благодаря деятельности апикальной меристемы. От побега он морфологически отличается тем, что на нем никогда не образуются листья, а апикальная меристема всегда прикрыта корневым чехликом.
Кроме главной функции поглощения веществ из почвы, корни выполняют и другие функции:
1) корни укрепляют («заякоривают») растения в почве, делают возможным вертикальный рост и вынесение побегов наверх;
2) в корнях синтезируются различные вещества, которые затем передвигаются в другие органы растения;
3) в корнях могут откладываться запасные вещества;
4) корни взаимодействуют с корнями других растений, микроорганизмами, грибами, обитающими в почве.
Совокупность корней одной особи образует единую в морфологическом и физиологическом отношении корневую систему.
В состав корневых систем входят корни различной морфологической природы – главный корень, боковые и придаточные корни.
Главный корень развивается из зародышевого корешка. Боковые корни образуются на корне (главном, боковом, придаточном), который по отношению к ним обозначается как материнский. Они возникают на некотором расстоянии от апекса, в направлении от основания корня к его верхушке. Боковые корни закладываются эндогенно, т.е. во внутренних тканях материнского корня. Если бы ветвление происходило в самом апексе, это бы затруднило продвижение корня в почве. Придаточные корнимогут возникать и на стеблях, и на листьях, и на корнях. В последнем случае они отличаются от боковых корней тем, что не обнаруживают строгого порядка заложения вблизи апекса материнского корня и могут возникать на старых участках корней.
По происхождению выделяют следующие типы корневых систем (рис. 4.1):
1) система главного корня представлена главным корнем (первого порядка) с боковыми корнями второго и последующих порядков (у многих кустарников и деревьев, большинства двудольных растений);
2)система придаточных корнейразвивается на стеблях, листьях; встречается у большинства однодольных растений и многих двудольных, размножающихся вегетативно;
3)смешанная корневая система образована главным и придаточными корнями с их боковыми ответвлениями (многие травянистые двудольные).
Рис. 4.1. Типы корневых систем : А – система главного корня; Б – система придаточных корней; В – смешанная корневая система (А и В – стержневые корневые системы; Б – мочковатая корневая система).
По форме различают стержневую и мочковатую корневые системы.
В стержневойкорневой системе главный корень сильно развит и хорошо заметен среди остальных корней. В мочковатой корневой системе главный корень незаметен или его нет, а корневая система составлена многочисленными придаточными корнями (рис. 4.1).
Корень обладает потенциально неограниченным ростом. Однако в естественных условиях рост и ветвление корней ограничены влиянием других корней и почвенных экологических факторов. Основная масса корней располагается в верхнем слое почвы (15 см), наиболее богатом органическими веществами. Корни деревьев углубляются в среднем на 10-15 м, а в ширину распространяются обычно за пределы радиуса крон. Корневая система кукурузы заходит на глубину около 1,5 м и примерно на 1 м во все стороны от растения. Рекордная глубина проникновения корней в почву отмечена у пустынного мескитового кустарника – более 53 м.
У одного куста ржи, выращенного в теплице, общая длина всех корней составила 623 км. Суммарный прирост всех корней за одни сутки равнялся примерно 5 км. Общая поверхность всех корней у этого растения составила 237 м2 и была в 130 раз больше поверхности надземных органов.
Зоны молодого корневого окончания -это разные по длине части молодого корня, выполняющие неодинаковые функции и характеризующиеся определенными морфологическими и анатомическими особенностями (рис. 4.2).
Кончик корня снаружи всегда прикрыт корневым чехликом, защищающим апикальную меристему. Чехлик состоит из живых клеток и постоянно обновляется: по мере того, как с его поверхности слущиваются старые клетки, на смену им, изнутри, апикальная меристема образует новые молодые клетки. Наружные клетки корневого чехлика отслаиваются еще будучи живыми, они продуцируют обильную слизь, которая облегчает продвижение корня среди твердых частиц почвы. В клетках центральной части чехлика содержится много крахмальных зерен. По-видимому, эти зерна служат статолитами, т. е. способны перемещаться в клетке при изменении положения кончика корня в пространстве, благодаря чему корень растет всегда в сторону действия силы тяжести (положительный геотропизм).
Под чехликом находится зона деления, представленная апикальной меристемой, в результате деятельности которой формируются все прочие зоны и ткани корня. Зона деления имеет размеры около 1 мм. Клетки апикальной меристемы относительно мелкие, многогранные, с густой цитоплазмой и крупным ядром.
Вслед за зоной деления располагается зона растяжения, илизона роста. В этой зоне клетки почти не делятся, а сильно растягиваются (растут) в продольном направлении, вдоль оси корня. Объем клеток увеличивается за счет поглощения воды и образования крупных вакуолей, при этом высокое тургорное давление проталкивает растущий корень между частицами почвы. Протяженность зоны растяжения обычно невелика и не превышает нескольких миллиметров.
Рис. 4.2.Общий вид (А) и продольный срез (Б) корневого окончания (схема ): I – корневой чехлик; II – зоны деления и растяжения; III – зона всасывания; IV – начало зоны проведения: 1 – растущий боковой корень; 2 – корневые волоски; 3 – ризодерма; 3а – экзодерма; 4 – первичная кора; 5 – эндодерма; 6 – перицикл; 7 – осевой цилиндр.
Далее идет зона поглощения, илизона всасывания. В этой зоне покровной тканью является ризодерма (эпиблема), клетки которой несут многочисленные корневые волоски. Растяжение корня прекращается, корневые волоски плотно охватывают частицы почвы и как бы срастаются с ними, поглощая воду и растворенные в ней минеральные соли. Зона поглощения имеет протяжение до нескольких сантиметров. Эту зону называют также зоной дифференциации, поскольку именно здесь происходит образование постоянных первичных тканей.
Продолжительность жизни корневого волоска не превышает 10-20 дней. Выше зоны всасывания, там, где исчезают корневые волоски, начинается зона проведения. По этой части корня вода и растворы солей, поглощенные корневыми волосками, транспортируются в вышележащие органы растения. В зоне проведения формируются боковые корни (рис. 4.2).
Клетки зон всасывания и проведения занимают фиксированное положение и не могут смещаться относительно участков почвы. Однако сами зоны, вследствие постоянного верхушечного роста, непрерывно перемещаются вдоль корня по мере нарастания корневого окончания. В зону поглощения постоянно включаются молодые клетки со стороны зоны растяжения и одновременно исключаются клетки стареющие, переходящие в состав зоны проведения. Таким образом, всасывающий аппарат корня – подвижное образование, непрерывно передвигающееся в почве.
Так же последовательно и закономерно в корневом окончании возникают внутренние ткани.
Первичное строение корня.Первичная структура корня образуется в результате деятельности апикальной меристемы. Корень отличается от побега тем, что его апикальная меристема откладывает клетки не только внутрь, но и наружу, пополняя чехлик. Число и расположение инициальных клеток в апексах корней значительно варьируют у растений, принадлежащих к разным систематическим группам. Производные инициалей уже вблизи апикальной меристемы дифференцируются в первичные меристемы – 1) протодерму, 2) основную меристему и 3) прокамбий (рис. 4.3 ). Из этих первичных меристем в зоне всасывания формируются три системы тканей: 1) ризодерма, 2) первичная кора и 3) осевой (центральный) цилиндр, или стела.
Рис. 4.3. Продольный срез кончика корня лука.