Основные метрологические показатели средств измерения.
Системы физических величин и их единиц
Для того чтобы можно было установить для каждого объекта различия в количественном содержании свойства, отображаемого физической величиной, в метрологии введены понятия ее размера и значения.
Размер физической величины— это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т. е. по размеру интересующей нас ФВ.
Важной характеристикой ФВ является ее размерность dim Q — выражение, отражающее связь данной величины с основными ФВ. Показатель степени, в которую возведена размерность основной величины, называют показателем размерности. Если все показатели размерности равны нулю, то такую величину называют безразмерной.
Над размерностями можно производить действия умножения, деления, возведения в степень и извлечение корня. Понятие размерности широко используется:
• для перевода единиц из одной системы в другую;
• для проверки правильности сложных расчетных формул, полученных в результате теоретического вывода;
• при выяснении зависимости между величинами;
• в теории физического подобия.
Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.
Обоснованно, но произвольным образом выбираются несколько ФВ, называемые основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.
В названии системы ФВ применяют символы величин, принятых за основные. Например, система величин механики, в котором в качестве основных используются длина (L), масса (М) и время (Т), называется системой LMT. Действующая в настоящее время международная система СИ должна обозначаться символами LMTIQNJ, соответствующими символам основных величин: длине (L), массе (М), времени (Т), силе электрического тока (I), температуре (Q), количеству вещества (N) и силе света (J).
В Российской Федерации используется система единиц СИ, введенная ГОСТ 8.417—81. В качестве основных единиц приняты метр, килограмм, секунда, ампер, Кельвин, моль и канделла.
Единицы ФВ делятся на системные и внесистемные. Системная единица — единица ФВ, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными. Внесистемная единица — это единица ФВ, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на четыре вида:
• допускаемые наравне с единицами СИ, например: единицы массы – тонна, объема – литр.
• допускаемые к применению в специальных областях (астрономия – парсек, световой год)
• Временно допускаемые к применению наравне с единицами СИ (миля в морской навигации, карат – масса в ювелирном деле)
• Изъятые из употребления (мм.рт. столба, лошадиная сила)
Виды средств измерений
Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений. К средствам измерений относятся: меры, измерительные преобразователи, измерительные приборы, измерительные установки и системы, измерительные принадлежности.
Мерой называют средство измерения, предназначенное для воспроизведения физических величин заданного размера. К данному виду средств измерений относятся гири, концевые меры длины и т.п. На практике используют однозначные и многозначные меры, а также наборы и магазины мер. Однозначные меры воспроизводит величины только одного размера (гиря). Многозначные меры воспроизводят несколько размеров физической величины. Например, миллиметровая линейка дает возможность выразить длину предмета в сантиметрах и в миллиметрах.
Измерительный преобразователь - это средство измерений, которое служит для преобразования сигнала измерительной информации в форму, удобную для обработки или хранения, а также передачи в показывающее устройство. Измерительные преобразователи либо входят в конструктивную схему измерительного прибора, либо применяются совместно с ним, но сигнал преобразователя не поддается непосредственному восприятию наблюдателем. Например, преобразователь может быть необходим для передачи информации в память компьютера, для усиления напряжения и тд. Преобразуемую величину называют входной, а результат преобразования - выходной величиной. Основной метрологической характеристикой измерительного преобразователя считается соотношение междувходной и выходной величинами, называемое функцией преобразования,
Преобразователи подразделяются на первичные (непосредственно воспринимающие измеряемую величину), передающие, на выходе которых величина приобретает форму, удобную для регистрации или передачи на расстояние; промежуточные, работающие в сочетании с первичными и не влияющие на изменение рода физической величины.
Измерительные приборы - это средства измерений, которые позволяют получать измерительную информацию в форме, удобной для восприятия пользователем. Различаются измерительные приборы прямого действия и приборы сравнения.
Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. Изменения рода физической величины при этом не происходит. К приборам прямого действия относят, например, амперметры, вольтметры, термометры и т.п.
Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны. Такие приборы широко используются в научных целях, а также и на практике для измерения таких величин, как яркость источников излучения, давление сжатого воздуха и др.
Измерительные установки и системы - это совокупность средств измерений, объединенных по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин объекта измерений. Обычно такие системы автоматизированы и обеспечивают ввод информации в систему, автоматизацию самого процесса измерения, обработку и отображение результатов измерений для восприятия их пользователем. Такие установки (системы) используют и для контроля (например, производственных процессов), что особенно актуально для метода статистического контроля, а также принципа TQM в управлении качеством
Измерительные принадлежности - это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности. Например, термометр может быть вспомогательным средством, если показания прибора достоверны при строго регламентированный температуре; психрометр - если строго оговаривается влажность окружающей среды.
Следует учитывать, что измерительные принадлежности вносят определенные погрешности в результат измерений, связанные с погрешностью самого вспомогательного средства.
По метрологическому назначению средства измерений делят на два вида - рабочие средства измерений и эталоны. Рабочие средства измерений применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др. Рабочие средства могут быть лабораторными (для научных исследований), производственными (для обеспечения и контроля заданных характеристик технологических процессов), полевыми (для самолетов, автомобилей, судов и т.п.). Каждый из этих видов рабочих средств отличается особыми показателями. Так, лабораторные средства измерений - самые точные и чувствительные, а их показания характеризуются высокой стабильностью. Производственные обладают устойчивостью к воздействиям различных факторов производственного процесса: температуры, влажности, вибрации и т.п., что может сказаться на достоверности и точности показаний приборов. Полевые работают в условиях, постоянно изменяющихся в широких пределах внешних воздействий.
Основные метрологические показатели средств измерения.
Деление шкалы прибора - промежуток между двумя соседними отметками шкалы.
Длина (интервал) деления шкалы - расстояние между осями двух соседних отметок шкалы.
Цена деления шкалы — разность значений величин, соответствующих двум соседним отметкам шкалы; например, 0,002 мм при длине (интер-вале) деления шкалы прибора, равной 1 мм.
Диапазон показаний (измерений по шкале) - область значений шкалы, ограниченная ее начальным и конечным значениями; например, диапазон показаний оптиметра ±0,1 мм.
Диапазон измерений — область значений измеряемой величины, в пределах которой нормированы допустимые погрешности средства измерений, например, диапазон измерения длин на проекционном вертикальном оптиметре ИКВ-3 0-200 мм.
Предел измерений — наибольшее или наименьшее значения диапазона измерений.
Измерительная сила — сила воздействия измерительного наконечника на измеряемую деталь в зоне контакта.
Предел допустимой погрешности средства измерения — наибольшая (без учета знака) погрешность средства измерений, при которой оно может быть признано годным и допущено к применению; например, пределы допустимой погрешности 100-миллиметровой концевой меры длины 1-го класса равны ±0,5 мкм.
Стабильность средства измерения — свойство, отражающее постоянство во времени его метрологических показателей.
Погрешность измерения — разность между результатом измерения и истинным значением измеряемой величины.
Точность измерений — характеристика качества измерений, отражающая близость к нулю погрешностей их результатов. При высокой точности погрешности всех видов минимальны.
Точность средств измерений — качество средств измерений, характеризующее близость к нулю их погрешностей.
Воспроизводимость измерений — близость результатов измерений одной и той же конкретной величины, выполняемых в различных условиях в различных местах различными методами и средствами.
Чувствительность измерительного прибора — отношение изменения сигнала на выходе измерительного средства к вызвавшему его изменению измеряемой величины. Например, при перемещении измерительного наконечника измерительной пружинной головки ИГП на величину цены деления 0,5 мкм указатель перемещается на одно деление шкалы, равное 1 мм.
Чувствительность этого прибора равна 1000: 0,5 = 2000. Для шкальных измерительных приборов типа пружинных головок, индикаторов часового типа чувствительность численно равна передаточному отношению механизма прибора.
Поправка — величина, которая должна быть алгебраически прибавлена к показанию измерительного прибора или к номинальном значению меры, чтобы исключить систематические погрешности и получить значение измеряемой величины или значение меры, более близкое их истинным значениям.
Нормируемые метрологические характеристики стандартизованы. К ним относятся систематическая составляющая погрешности измерения, случайная составляющая, динамические характеристики и др. Показатели точности и формы представления результатов измерения должны соответствовать стандартам. Например, точность измерения целесообразно представлять интервалом, в котором с установленной вероятностью находится суммарная погрешность измерения, отдельно интервалом систематической составляющей и т. д.
В зависимости от пределов допустимых погрешностей средств изме-рений, а также других их свойств, влияющих на точность измерения, многим типам измерительных средств присваивают соответствующие классы точности.
Повышение точности измерительных средств достигается, в частности, сочетанием больших передаточных отношений с простотой и технологичностью конструкции, введением в конструкцию средств, предназначенных для уменьшения погрешностей, вносимых зазорами, мертвыми ходами и износом, применением устройств, предназначенных для стабилизации измерительной силы и др. соответствии с принципом Аббе : необходимо, чтобы на одной прямой линии располагали ось шкалы прибора и контролируемый размер про-веряемой детали, т. е. линия измерения должна являться продолжением линии шкалы. Если этот принцип НЕ выдерживается, то перекос и не параллельность направляющих измерительного прибора вызывают значительные погрешности измерения. При соблюдении принципаАббе погрешностями, вызываемыми перекосами, можно пренебречь, так как они являются ошибками второго порядка малости.
Для контроля точных процессов производства и повышения качества машин и других изделий необходимо не только непрерывно повышать точность, производительность и надежность средств измерения, но и правильно применять и систематически поверять средства измерения в процессе эксплуатации. Ошибочные результаты измерения из-за не-качественного выполнения собственно измерений столь же часты, как и при применении неточных средств измерения. Как в том, так и в другом случае возникает необнаруженный брак, который приводит к браку на последующих этапах процесса производства или к снижению качества изделий, их точности, надежности и долговечности.
Для устранения указанных недостатков в нашей стране создана Государственная система обеспечения единства измерений (ГСИ). Основные задачи ГСИ: установление единиц физических величин, методов и средств воспроизведения единиц, рациональной системы передачи единиц от эталонов к рабочим средствам измерений; определение номенклатуры,
так как они являются ошибками второго порядка малости.
Для контроля точных процессов производства и повышения качества машин и других изделий необходимо не только непрерывно повышать точность, производительность и надежность средств измерения, но и правильно применять и систематически поверять средства измерения в процессе эксплуатации. Ошибочные результаты измерения из-за некачественного выполнения собственно измерений столь же часты, как при применении неточных средств измерения. Как в том, так и в другом случае возникает необнаруженный брак, который приводит к браку на последующих этапах процесса производства или к снижению качества изделий, их точности, надежности и долговечности.
Классификация измерений
Наибольшее распространение получила классификация по общим приемам получения результатов измерений. Согласно этому признаку, измерения делятся на:
• прямые,
• косвенные,
• совместные
• совокупные.
Целью такого деления является удобство выделения методических погрешностей измерений, возникающих при определении результатов измерений.
Прямыми называются измерения, при которых искомое значение величины находят непосредственно по показаниям СИ. Например, масса, измеряемая при помощи весов, температура — термометром, напряжение — вольтметром.
Косвенные измерения — это измерения, при которых значение измеряемой величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям, которые проводились в одинаковых условиях. Например, измерение плотности ρ = m/V Такие измерения имеют весьма важное значение для метрологической практики. На их основе, например, устанавливают значения, приписываемые эталонам единиц производных ФВ, исходя из значений единиц основных величин, воспроизводимых первичными эталонами. Широко применяются и менее точные косвенные измерения.
Совокупными называются проводимые одновременно измерения нескольких одноименных величин, при которых их искомые значения находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.
Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для установления зависимости между ними. Как видно из приведенных определений, эти два вида измерений весьма близки друг к другу. Отличие состоит в том, что при совместных измерениях одновременно определяются несколько одноименных величин, а при совокупных — разноименных.
Косвенные, совместные и совокупные измерения объединяются одним принципиально важным общим свойством: их результаты определяются расчетом по известным функциональным зависимостям между измеряемыми величинами и величинами, подвергаемыми прямым измерениям.
• По характеристике точности измерения делятся на: равноточные и неравноточные.
Равноточными называются измерения какой-либо ФВ, выполненные одинаковыми по точности СИ и в одних и тех же условиях.
Неравноточными называются измерения ФВ, выполненные различными по точности СИ и (или) в разных условиях. Методика обработки результатов равноточных и неравноточных измерений различна.
• В зависимости от числа измерений, проводимых во время эксперимента, различают одно- и многократные измерения.
Однократными называются измерения, выполненные один раз, к многократными относятся измерения одного и того же размера ФВ, следующие друг за другом. При четырех и более измерениях, входящих в ряд, измерения можно считать многократными. Их проводят с целью уменьшения случайной составляющей погрешности.
• По отношению к изменению измеряемой величины измерения делятся на статические и динамические.
К статическим относятся измерения ФВ, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
Динамические измерения - это измерения изменяющейся по размеру ФВ.
• В зависимости от метрологического назначения измерения делятся на технические и метрологические.
Технические измерения проводятся рабочими СИ. Метрологические измерения выполняются при помощи эталонов с целью воспроизведения единиц ФВ для передачи их размера рабочим СИ.
• В зависимости от выражения результатов измерений последние подразделяются на абсолютные и относительные.
Абсолютное измерение основано на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Понятие "абсолютное измерение" применяется как про-тивоположное понятию "относительное измерение" и рассматривается как определение величины в ее единицах.
Относительное измерение — это измерение отношения определяемой величины к одноименной. Относительные измерения при прочих равных условиях могут быть выполнены более точно, чем абсолютные, поскольку в суммарную погрешность не входит погрешность меры величины.