Гипотетико-дедуктивный метод
— метод научного познания и рассуждения, основанный на выведении (дедукции) заключений из гипотез и др. посылок, истинностное значение которых неизвестно. Поскольку в дедуктивном рассуждении значение истинности переносится на заключение, а посылками служат гипотезы, то и заключение гипотетико-дедуктивного рассуждения имеет лишь вероятностный характер. Соответственно типу посылок гипотетико-дедуктивные рассуждения разделяются на две основные группы: 1) рассуждения, посылками которых являются гипотезы и эмпирические обобщения, истинность которых еще нужно установить; 2) выводы из таких посылок, которые заведомо ложны или ложность которых может быть установлена. Выдвигая некоторое предположение в качестве посылки, можно из него дедуцировать следствия, противоречащие хорошо известным фактам или истинным утверждениям. Таким путем в ходе дискуссии можно убедить оппонента в ложности его предположений. Примером является метод приведения к абсурду.
В научном познании Г.-д.м. получил широкое распространение и развитие в 17—18 вв., когда были достигнуты значительные успехи в области изучения механического движения земных и небесных тел. Первые попытки применения Г.-д.м. были сделаны в механике, в частности в исследованиях Г. Галилея. Теория механики, изложенная в «Математических началах натуральной философии» И. Ньютона, представляет собой гипотетико-дедуктивную систему, посылками которой служат основные законы движения. Успех Г.-д.м. в области механики и влияние идей Ньютона обусловили широкое распространение этого метода в области точного естествознания.
С логической т.зр., гипотетико-дедуктивная система представляет собой иерархию гипотез, степень абстрактности и общности которых увеличивается по мере удаления от эмпирического базиса. На вершине располагаются гипотезы, имеющие наиболее общий характер и поэтому обладающие наибольшей логической силой. Из них как из посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно сопоставить с эмпирическими данными. В современной науке многие теории строятся в виде гипотетико-дедуктивной системы.
Такое построение научных теорий имеет большое методологическое значение, поскольку позволяет осуществлять эмпирическую проверку и подтверждение научных гипотез и теорий. Гипотезы самого низкого уровня проверяются путем сопоставления их с эмпирическими данными. Если они подтверждаются этими данными, то это служит косвенным подтверждением и гипотез более высокого уровня, из которых логически выведены первые гипотезы. Наиболее общие принципы научных теорий нельзя непосредственно сопоставить с действительностью, с тем чтобы удостовериться в их истинности, ибо они, как правило, говорят об абстрактных или идеальных объектах. Для того чтобы соотнести общие принципы с действительностью, нужно с помощью длинной цепи логических выводов получить из них следствия, говорящие уже не об идеальных, а о реальных объектах. Эти следствия можно проверить непосредственно. Поэтому ученые и стремятся придавать своим теориям структуру гипотетико-дедуктивной системы.
Разновидностью Г.-д.м. считают метод математической гипотезы, который используется как важнейшее эвристическое средство для открытия закономерностей в естествознании. В процессе научного исследования наиболее трудная — подлинно творческая — задача состоит в том, чтобы открыть и сформулировать те принципы и гипотезы, которые могут послужить основой всех последующих выводов. Г.-д.м. играет в этом процессе вспомогательную роль, поскольку с его помощью не выдвигаются новые гипотезы, а только выводятся и проверяются вытекающие из них следствия.
Аксиоматический Метод - один из способов дедуктивного построения научных теорий.Аксиоматический Метод - способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами. А. м. – особый способ определения объектов и отношений между ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др. А. м. зародился еще в античности и приобрел большую известность благодаря “Началам” Евклида, появившимся около 330 – 320 гг. до н. э. Евклиду не удалось, однако, описать в его “аксиомах и постулатах” все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. “Скрытые” допущения геометрии Евклида были выявлены только в новейшее время Д. Гильбертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода. К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д. A.M. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории. Как показал известный математик и логик К. Гёдель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности A.M. и невозможности полной формализации научного знания (см.: Гёделя теорема).