Кожный кровоток и температура кожи

Кожный кровоток у взрослого человека при комфортных условиях внешней среды составляет в покое около 0,16 л/м /мин, во время работы - до 1 л/м2/мин, а при очень высокой внешней температуре может достигать 2,6 л/м2/мин. Это означает, что в очень жарких условиях до 20% сердечного выброса может направляться в кожную сосудистую сеть для предотвращения перегревания тела. В комфортных условиях при такой же работе эта доля сердечного выброса достигает лишь 5%. Мощность нагрузки практически не влияет на температуру кожи. Средняя температура кожи при работе на велоэргометре (в помещении) есть линейная функция внешней температуры (в пределах от 5 до 35°).

Температура кожи линейно связана с величиной кожного кровотока. Усиленный кровоток в коже повышает ее температуру, и если температура окружающей среды ниже, чем температура кожи, то повышаются потери тепла проведением с конвекцией и радиацией. Повышение, кожной температуры уменьшает также влияние внешней радиации на тело.

Движение воздуха усиливает отдачу тепла конвекцией и испарением. В результате средняя кожная температура снижается и, таким образом, увеличиваются температурные градиенты "ядро- кожа" и "кожа - окружающая среда", что еще более облегчает Условия для теплопотерь конвекцией и радиацией. При высокой температуре воздуха его дополнительное движение делает рабочую гипертермию умеренной. Благодаря усиленной конвекции воз-Духа при езде на велосипеде средняя температура кожи значительно ниже, а теплоотдача выше, чем при беге.

Кожный кровоток и температура кожи - student2.ru Рис. 59. Связь скорости потоотделения (г/ч) со средней кожной температурой: 1 - разная мощность рабочей нагрузки (от 90 до 235 Вт) при постоянной внешней температуре (20°); 2 - постоянная мощность рабочей нагрузка (150 Вт) при разной внешней температуре (от 5 до 30°); 3 - условия покоя при разной внешней температуре (от 25 до 4°);

Скорость потообразования и потоотделения зависит от целого ряда факторов. Главными из них являются скорость, энергопродукции и физические условия окружающей среды (температура и влажность воздуха). Если одна и та же физическая нагрузка выполняется при разных внешних температурах (не считая очень высоких и очень низких), внутренняя температура тела остается одинаковой, а скорость потоотделения возрастает как линейная функция средней температуры кожи (рис. 59). Наоборот, при постоянной внешней температуре средняя температура кожи постоянна, а скорость потоотделения линейно связана с внутренней температурой тела, которая, в свою очередь, есть функция мощности нагрузки. Следовательно, чем больше мощность выполняемой работы, тем выше скорость потоотделения при той же средней температуре кожи. Таким образом, скорость потоотделения зависит как от температуры ядра тела, так и от температуры его оболочки. Высокая влажность воздуха даже при относительно невысокой его температуре затрудняет испарение пота: усиливается потообразование без эффективного потоиспарения. В условиях покоя при температуре воздуха 43° секреция пота увеличивается более чем в 3 раза, если относительная влажность воздуха повышается с 30 до 84%. Во время нетяжелой работы повышение влажности воздуха с 30 до 57% почти удваивают скорость потообразования.

Кожный кровоток и температура кожи - student2.ru Рис. 60. Связь между скоростью потоотделения И температурой тела (эзофагальной) при двух разных скоростях воздушного потока: 1 - 2,2 м/с; 2 - 0,1 м/с. Средняя кожная температура. - около 34°

При интенсивной спортивной деятельности скорость потоотделения очень большая. Например, во время марафонского бега при небольшой относительной влажности воздуха скорость потоотделения у тренированного спортсмена достигает 20-25 мл/мин (1200-1500 мл/ч). При прочих равных условиях увеличение скорости движения воздуха ускоряет процесс потоиспарения (рис. 60). При повышенной влажности воздуха в безветренную погоду испарение пота замедляется, скорость потообразования падает, что приводит к дополнительному повышению температуры тела.

По мере пребывания в жарких условиях происходит постепенное снижение скорости ("утомление") потообразования. Это наблюдается даже в тех случаях, когда потери воды с потом полностью возмещаются выпитой водой. Снижение скорости потообразования более выражено в условиях повышенной влажности воздуха, чем при жарком сухом воздухе. Природа такого, "утомления" процесса потообразования пока не. выяснена. Если у человека после повторного пребывания в сауне (сухой жаркий воздух) происходит "утомление" потообразования, то мышечная работа еще способна вызвать у него достаточно интенсивное потоотделение. Высушивание кожи периодическим ее вытиранием или за счет увеличения скорости движения воздуха ускоряет в этих условиях процесс потоотделения.

Следует отметить, что при одинаковых физических нагрузках и внешней температуре потоотделение у женщин меньше, чем у мужчин.

Водно-солевой баланс

Одним из самых тяжелых последствий усиленного потоотделения во время мышечной работы, выполняемой в условиях повышенных температуры и влажности воздуха, является нарушение водно-солевого баланса организма. Оно заключается в быстрой потере воды телом, т. е. в развитии острой дегидратации (обезвоживания), а также в изменении содержания в водных пространствах тела ряда электролитов (солей).

Дегидратация может быть вызвана разными причинами: пребыванием в условиях повышенной температуры внешней среды (термическая дегидратация), продолжительной и интенсивной мышечной работой (рабочая дегидратация) и комбинацией этих двух условий, т. е. интенсивной мышечной работой при повышенной температуре (терморабочая дегидратация). Разные формы дегидратации вызывают неодинаковые изменения в функциях разных тканей и систем организма.

При рабочей дегидратации особенно заметно снижение физической работоспособности. Значительная рабочая дегидратация развивается лишь при длительных (более 30 мин) и достаточно интенсивных упражнениях (субмаксимальной аэробной мощности), особенно если они выполняются в условиях повышенных температуры и влажности воздуха. При тяжелой, но кратковременной работе даже в условиях повышенных температуры и влажности воздуха .сколько-нибудь значительная дегидратация не успевает развиться.

Поддержание температуры тела в допустимых пределах для организма важнее, чем сохранение воды. При продолжительной тяжелой работе, сопровождающейся сильным потоотделением, может возникать большой дефицит воды в теле. Например, марафонцы могут терять во время соревнований в жарких условиях до 6 л воды с потом. Даже при некотором восполнении потерь воды приемом жидкостей на дистанции вес тела у марафонцев снижается в среднем на 5%, а в предельных случаях - на 8% с потерей 13-14% общего количества воды. Общие потери воды в резульг тате мышечной работы можно легко оценить, сравнив вес тела до и после работы (с учетом выпитой в этот промежуток воды).

Кожный кровоток и температура кожи - student2.ru Рис. 61. Влияние дегидратации на ЧСС и ректальную температуру во время 2-часовой работы на велоэргометре: 1 - при дегидратации; 2 - при нормальных условиях

Человек, потерявший большое количество воды, неустойчив к жаре, его работоспособность снижается. Даже уменьшение веса тела на 1-2% из-за потери воды снижает физическую работоспособность, особенно у нетренированного человека. В условиях дегидратации организм хуже регулирует температуру тела, так что при одинаковой нагрузке температура тела у обезвоженных людей (потеря 3-4% веса тела) выше, чем у нормально гидратированных (рис. 61). Чем выше степень дегидратации, тем больше температура тела во время работы. При дегидратации с потерей 3% веса тела уменьшается активность потовых желез.

Одним из наиболее важных отрицательных последствий дегидратации является уменьшение объема плазмы крови. При рабочей дегидратации с потерей 4% веса тела объем плазмы уменьшается на 16-18%. Соответственно уменьшается объем циркулирующей крови, что приводит к снижению венозного возврата и как следствие-к падению систолического объема. Для компенсации последнего повышается ЧСС (см. рис. 61). Другим следствием уменьшения объема плазмы крови является гемоконцент рация с повышением показателя гематокрита и вязкости крови, что увеличивает нагрузку на сердце и может снижать его производительность.

Одним из тяжелых последствий большой потери воды телом является уменьшение объема межклеточной (тканевой) и внутриклеточной жидкостей. В клетках с пониженным содержанием воды и измененным равновесием электролитов нарушается нормальная жизнедеятельность. Это, в частности, относится к скелетным и сердечной мышцам, сократительная способность которых в условиях дегидратации может значительно снижаться.

Физиологические механизмы, контролирующие поддержание нормального водно-солевого баланса во всем теле и его водных пространствах, многообразны. Уменьшение содержания воды в плазме повышает в ней концентрацию электролитов и других веществ, что ведет к повышению осмотического давления плазмы. В процессе работы осмоляр-ность плазмы крови непрерывно повышается также вследствие выхода в кровь низкомолекулярных метаболических продуктов и ионов калия из активных мышечных клеток. В результате часть жидкости перемещается из межклеточных (тканевых) пространств в сосуды, восполняя плазмопотери. Благодаря этому удается восстанавливать объем плазмы и поддерживать его на относительно постоянном уровне после периода снижения в начале работы. По мере развития термической дегидратации (в отличие от рабочей) объем плазмы непрерывно уменьшается.

При высокой внешней температуре в результате усиления кожного кровотока происходит интенсивная фильтрация жидкости из кожных капилляров во внесосудистые (тканевые) пространства кожи. Это ведет к интенсивному вымыванию белка, которого в этих пространствах относительно много, в лимфоток и оттуда в кровеносную систему. Переход белка в кровь увеличивает ее онкотиче-ское давление, что вызывает усиление адсорбции воды в кровеносные капилляры из межклеточных (внесосудистых) водных пространств, помогая таким образом поддерживать объем циркулирующей плазмы (крови). Вымывание белка из кожных тканевых пространств в кровь автоматически компенсирует усиленную потерю Воды плазмой крови, вызванную интенсивным потоиспарением.

Кожный кровоток и температура кожи - student2.ru Рис. 62. Уменьшение скорости почечного кровотока и скорости клубочковой фильтрации в почках с увеличением мощности кратковременной работы, выполняемой в Положении лежа (мощность работы выражена через ЧСС)

Во время выполнения мышечной работы уменьшается почечный кровоток, причем тем больше, чем выше интенсивность работы (рис. 62) и в некоторых пределах чем выше температура и влажность воздуха. Параллельно, хотя и в меньшей степени, падает скорость фильтрации воды в почечных клубочках, т. е. снижается скорость образования мочи. Уменьшение почечного кровотока и скорости мочеобразования при работе в жарких условиях усиливает задержку воды почками (антидиурез). Одним из механизмов такой задержки является повышенное выделение из гипофиза антидиуретического гормона (АДГ) в ответ на снижение объема плазмы (дегидратацию) и увеличение ее осмолярности.

Важным дополнительным источником потоотделения во время мышечной работы служит вода, связанная с гликогеном - "эндогенная" вода, которая освобождается при расщеплении гликогена. С каждым граммом гликогена связано 2,7 г воды. Таким образом, гликогенолиз является не только источником энергии для сокращающихся мышц, но и дополнительным источником воды для работающего организма.

Главную роль в восполнении потерь воды в результате усиленного потоотделения при продолжительной напряженной мышечной работе (особенно в жарких условиях) играет прием жидкостей - питье воды или водных растворов во время и после работы.

При потере воды с потом организм теряет и некоторые минеральные вещества (соли). По сравнению с другими жидкостями пот является сильно разбавленным водным раствором. Концентрация в нем ионов натрия и хлора составляет примерно 1/3 их концентрации в плазме и 1/5 в мышцах. Таким образом, пот - это гипотонический раствор по сравнению с плазмой крови. Ионная концентрация пота сильно варьирует у разных людей и очень зависит от скорости потоотделения и состояния тепловой акклиматизации.

С увеличением скорости потообразования концентрация ионов натрия и хлора в поте увеличивается, концентрация ионов кальция уменьшается, а ионов калия и магния не изменяется. Следовательно, при длительной напряженной работе (например, во время марафонского бега) спортсмен теряет с потом главным образом ионы натрия и хлора, т. е. те ионы, которые находятся в основном в жидкости внеклеточных пространств - плазме и тканевой жидкости. Это главные электролиты, которые больше других определяют осмотическое давление плазмы и тканевых жидкостей, а значит, объем внеклеточной жидкости в теле. Потери ионов калия и магния, связанных с внутриклеточным водным пространством, значительно меньше.

Следует, однако, иметь в виду, что с потом уходит относительно больше воды, чем электролитов (солей). Поэтому при общем снижении содержания электролитов их концентрация в жидкостях тела повышается. Следовательно, во время продолжительного сильного потоотделения потребность организма в замещении воды больше, чем в немедленном восстановлении электролитов.

Кожный кровоток и температура кожи - student2.ru Рис. 63. Изменение концентрации альдостерона (1) и активности ренина (2) в плазме крови на протяжении 12 ч работы и последующих двух суток (по Д. Костиллу, 1977)

Потери электролитов с мочой во время мышечной работы обычно очень незначительны, так как образование мочи в этот период уменьшено, а реабсорбция натрия в почечных канальцах усилена, что обеспечивает задержку экскреции ионов натрия с мочой. Важную роль в этом "процессе играет повышение активности ренина и концентрации альдостеро-на в плазме крови (рис. 63). Недостаточное кровоснабжение почек при работе в жарких условиях может усиливать -эти .механизмы задержки натрия в организме. Такая задержка способствует сохранению водного баланса организма, так как объем ллазмы и остальной внеклеточной жидкости пропорционален содержанию в них ионов натрия.

Почечная вазоконстрикция и повышенная температура тела при работе в жарких условиях вызывают усиление проницаемости почечных клубочков, в результате чего в моче может появиться белок (рабочая лротеинурия).

Система кровообращения

У человека, находящегося в состоянии покоя в условиях прямого нагревания тела при высокой температуре воздуха (например, в жаркий день на солнце), усиливается кожный кровоток, увеличивается сердечный выброс за счет повышения ЧСС. Систолический объем при этом практически не изменяется. Общее периферическое сосудистое сопротивление и артериальное (систолическое) давление снижаются. Так, пребывание в финской бане (сауне), где сухой жаркий воздух, вызывает увеличение сердечного выброса примерно на 70% и ЧСС более чем на 60%.

Избыточный сердечный выброс направляется в кожные сосуды для усиления теплоотдачи. Кроме того, кожный кровоток увеличивается за счет дополнительного перераспределения сердечного выброса - уменьшения кровотока через органы брюшной полости и (в меньшей степени) через мышцы. Чревный и почечный кровотоки уменьшаются прямо пропорционально повышению температуры кожи.

Кожный кровоток и температура кожи - student2.ru Рис. 64. Сравнение реакции сердечнососудистой системы на работу разной мощности в жарких и нейтральных температурных условиях (Л. Роуэлл, 1974). Штриховая линия-жаркие условия (43,3°), сплошная - нейтральные условия (25,6°), Стрелки показывают направление изменения данного показателя под влиянием повышения температуры воздуха

Во время работы аэробной мощности повышенная температура воздуха обычно не оказывает заметного влияния на общую скорость потребления О2 (рис. 64). Лишь при выполнении легкой работы в жарких условиях потребление О2 может быть несколько выше, чем в нейтральных условиях.

Повышенная температура воздуха существенно не влияет на показатели деятельности сердечно-сосудистой системы при выполнении кратковременной работы (продолжительностью до 4-6 мин). Во время максимальной аэробной работы (на уровне МПК) максимальный сердечный выброс, ЧСС и системная АВР-О2 одинаковы в жарких и нейтральных условиях. МПК, в жарких условиях также не уменьшается, но сильно укорачивается предельная продолжительность работы на уровне МПК.

Во время продолжительной работы в жарких условиях сердечно-сосудистая система должна обеспечить одновременно адекватное кровоснабжение работающих мышц для доставки им достаточного количества О2 (метаболический запрос) и усиленный кожный кровоток для повышенной теплоотдачи (терморегуляторный запрос). Эта задача еще более осложняется из-за уменьшения объема циркулирующей крови и повышения ее вязкости.

В жарких условиях ЧСС и сердечный выброс выше, чем при выполнении такой же работы в нейтральных условиях среды (см. рис. 64). Помимо температуры на ЧСС влияет также повышенная влажность воздуха. Увеличение ЧСС обнаруживается с самого начала работы в жарких условиях. Сердечный выброс увеличивается постепеннр в процессе выполнения работы, а систолический объем прогрессивно уменьшается. Увеличение сердечного выброса обеспечивает дополнительный кровоток через кожные сосуды для усиления теплоотдачи.

С увеличением мощности выполняемой работы "тепловой" прирост сердечного выброса уменьшается. При субмаксимальных и околомаксимальных аэробных нагрузках сердечный выброс в жарких условиях среды примерно такой же, что и в нейтральных температурных условиях. Однако, при высокой температуре воздуха происходит заметное снижение систолического объема, которое компенсируется дополнительным повышением ЧСС. Поскольку сердечный выброс не может быть более увеличен, дальнейшее усиление кожного кровотока обеспечивается только за счет перераспределения сердечного выброса. В результате уменьшается кровоток через работающие мышцы, возникает дефицит в их снабжении О2, возрастает анаэробная доля в энергопродукции мышц. Поэтому при одних и тех же субмаксимальных и околомаксимальных аэробных нагрузках концентрация' лактата в крови в жарких условиях выше, чем в нейтральных (см. рис. 64).

Ухудшение кровоснабжения работающих мышц является одной из главных причин снижения работоспособности в жарких условиях. Из сказанного следует, что ухудшение мышечного кровотока является следствием двух основных причин: во-первых, увеличивается доля сердечного выброса, направляемая в кожные сосуды для усиленной теплоотдачи; во-вторых, по мере развития дегидратации уменьшается сердечный выброс в результате уменьшения систолического объема, вызванного падением венозного возврата из-за снижения общего и центрального объемов циркулирующей крови (см. рис. 64).

Максимально возможная объемная скорость кожного кровотока - 7-8 л/мин. Тем не менее во время работы даже при очень высокой температуре воздуха кожный кровоток вероятно не превышает 3-4 л/мин. Следовательно, даже в этих условиях кожные сосуды несколько сужены (состояние активного сосудистого тонуса). Постепенно по мере продолжения работы кожные сосуды расширяются из-за снижения сосудистого тонуса. В результате еще большее количество крови направляется в кожную сосудистую сеть, а кровоснабжение работающих мышц еще больше ухудшается.

С расширением кожных сосудов уменьшается общее периферическое сосудистое сопротивление. При неизменном сердечном выбросе это ведет к падению артериального давления, которое постепенно снижается, вплоть до уровня, вызывающего сосудистый коллапс (обморок). Особенно резко АД падает из-за снижения сердечного выброса. Это происходит, когда ЧСС достигает максимально возможного для данного человека уровня, а систолический объем продолжает уменьшаться.

Поскольку при работе в жарких условиях резко уменьшается чревный кровоток (см. рис. 64), создаются дополнительные затруднения для организма, связанные с недостаточным кровоснабжением органов брюшной полости, и прежде всего печени. Работа при высокой температуре воздуха вызывает и усиленное снижение почечного кровотока (см. рис. 62).

Тепловая адаптация (акклиматизация)

Непрерывное или повторное пребывание в условиях повышенных температуры и влажности воздуха вызывает постепенное приспособление к этим специфическим условиям внешней среды, в результате чего развивается устойчивость организма против теплового стресса. Человек переносит жару значительно легче; выполнение работы становится менее трудным - как объективно (уменьшаются физиологические сдвиги на тепловые воздействия), так и субъективно. Наступает состояние тепловой адаптации - акклиматизации.

Наши рекомендации