Гаусса)

Наибольшее распространение получил нормальный закон распределения, называемый часто распределением Гаусса:

гаусса) - student2.ru (6.6)

где s — параметр рассеивания распределения, равный СКО; Хц — центр распределения, равный МО. Вид нормального распределения показан на рис. 6.3.

гаусса) - student2.ru

Рис. 6.6. Экспоненциальные распределения, определяемые по

формуле (6.5) при sl = 1 и Хц = 0

Широкое использование нормального распределения на практике объясняется центральной предельной георемой теории вероятностей [48, 49], утверждающей, что распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдений формируются под действием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

Вид экспоненциальных распределений при различных значениях показателя а приведен на рис. 6.6.

При введении новой переменной t = (х-Хц)/s из (6.6) получается нормированное нормальное распределение, интегральная и дифференциальная функции которого соответственно равны:

гаусса) - student2.ru

Нормирование приводит к переносу начала координат в центр распределения и выражению абсциссы в долях СКО. Значения интегральной и дифференциальной функций нормированного нормального распределения сведены в таблицы, которые можно найти в литературе по теории вероятностей [48, 49].

Определенный интеграл с переменным верхним пределом

гаусса) - student2.ru (6.7)

называют функцией Лапласа. Для нее справедливы следующие равенства: Ф(- ¥) = - ,5; Ф(0) = 0; Ф(+ ¥) = 0,5; Ф(t) = -Ф(t). Функция Лапласа используется для определения значений интегральных функций нормальных распределений. Функция F(t) связана с функцией Лапласа формулой F(t) = 0,5 + Ф(t). Поскольку интеграл в (6.7) не выражается через элементарные функции, то значения функции Лапласа для различных значений t сведены в таблицу (см. приложение 1).

Наши рекомендации