Логический квадрат. Умозаключения по логическому квадрату
Разновидности отношений совместимости и несовместимости силлогистических формул простых атрибутивных категорических суждений принято фиксировать с помощью «логического квадрата». Логический квадрат(квадрат противоположностей) — диаграмма, показывающая логические отношения по значениям истинности между имеющими одинаковые термины простыми категорическими атрибутивными суждениями (рис. 24).
Рис. 24
Разновидностями отношения совместимости являются: эквивалентность, субординация, субконтрарность.
V Пример
Суждения формулы SaP «Все гиппопотамы — бегемоты» (обозначим его А) и «Любой бегемот — это гиппопотам» (обозначим его В), область сказывания которых соответствует первой модельной схеме, находятся в не фиксируемом данной диаграммой отношении равнозначности (эквивалентности). Т. е. при знании значения истинности первого суждения можно сделать вывод об том же значении истинности второго суждения: А |= В (SaP |= SaP — закон силлогистического тождества для общеутвердительных высказываний). В данном случае в роли субъекта и предиката выступает одно и то же имя (с одним и тем же объёмом и содержанием), имеющее разное языковое выражение.
Естественно, такого же рода умозаключение в плане значения истинности можно сделать из любой другой формулы простого категорического атрибутивного высказывания к тождественной (имеющей эквивалентную логическую структуру) формуле: SiP |= SiP — закон силлогистического тождества для частноутвердительных высказываний, соответственно, SeP |= SeP — закон силлогистического тождества для общеотрицательных высказываний и SoP |= SoP — закон силлогистического тождества для частноотрицательных высказываний. В отношении подчинения (субординации) находятся суждения с одинаковыми терминами, имеющие одинаковое качество и разное количество.
V Пример
Суждение формы SaP «Все люди способны к логическому мышлению» находится в отношении подчинения (является подчиняющим) с суждением формы SiP «Некоторые люди способны к логическому мышлению»; суждение формы SeP — с суждением SoP: «Ни один металл не является неэлектропроводным» и «Некоторые металлы не являются неэлектропроводными».
Это значит, что 1) зная об истинности суждений-посылок формул SaP и SeP, мы выводим истинность суждений-заключений формул SiP и SoP, а именно: SaP |= SiP и SeP |= SoP, 2) зная о ложности суждений-посылок формул SiP и SoP, мы выводим ложность суждений-заключений формул SaP и SeP, а именно: ØSiP |= ØSaP и ØSoP |= ØSeP (читается «Если неверно, что некоторые S есть P, то неверно, что все S есть P» и «Если неверно, что некоторые S не есть P, то неверно, что ни один S не есть P»). В случае же истинности частноутвердительного суждения логического следования в отношении суждения общеутвердительного не имеется, равно как и в случае истинности частноотрицательного суждения не следует достоверного вывода в отношении истинностной характеристики суждения общеотрицательного, т. е. истинность частного суждения оставляет общее неопределённым. Несоблюдение этого правила ведёт к логической ошибке, называемой «поспешное обобщение», суть которой заключается в том, что рассмотрев несколько частных случаев из какого-либо класса явлений, делают вывод обо всём классе.
V Пример
«Верно, что некоторые учащиеся нашей группы — музыканты», но истинно или ложно, что «Все учащиеся нашей группы — музыканты», логически не установить; «Верно, что некоторые учащиеся нашей группы не являются музыкантами», но истинно ли или ложно, что «Ни один учащийся нашей группы не является музыкантом»?
Не представляется возможным получить логическое следование применительно к суждениям в отношении подчинения и при использовании в качестве посылок ложных общеутвердительных и общеотрицательных суждений, т. е. ложность общего суждения оставляет частное суждение неопределённым.
V Пример
«Неверно, что все учащиеся нашей группы — музыканты», но истинно ли или ложно, что «Некоторые учащиеся нашей группы — музыканты» логически не установить.
В отношении частичного совпадения (субконтрарности) находятся суждения с одинаковыми терминами, имеющие разное качество и частные по количеству. Такие суждения могут быть одновременно истинными, но не могут быть одновременно ложными. Если одно из них ложно, то другое с необходимостью истинно. В таком случае имеет место закон субконтрарного исключённого третьего.
V Пример
Из ложности суждения «Некоторые металлы не являются электропроводными» логически следует истинность суждения «Некоторые металлы являются электропроводными», что может быть формализовано: ØSoP |= SiP. Соответственно, из формулы ØSiP логически следует истинность формулы SoP (ØSiP |= SoP), например «Если неверно, что некоторые киты являются рыбами, то истинно, что некоторые киты рыбами не являются».
Из истинности же одного из суждений, находящихся в отношении субконтрарности, истинность или ложность другого логически не следует.
V Пример
«Верно, что некоторые слова записаны чёрными буквами», но следует ли из этого что-либо с логической необходимостью в отношении истинности или ложности суждения «Некоторые слова не записаны чёрными буквами»?
Итак, отношения равнозначности, подчинения и частичного совпадения характеризуют суждения, являющиеся совместимыми, т. е. выражающими одну и ту же мысль полностью (суждения в отношении равнозначности) или в некоторой части (суждения в отношении подчинения и частичного совпадения). Как было отмечено выше, помимо совместимых суждений существует класс несовместимых суждений, т. е. не выражающих одну и ту же мысль полностью или в некоторой части, принципиально не могущих быть одновременно и в одном и том же отношении истинными, иначе происходит нарушение уже известных нам законов противоречия и исключённого третьего. К несовместимым суждениям относятся простые категорические атрибутивные суждения, находящиеся в отношениях противоположности (противности, контрарности) и противоречия (контрадикторности). В отношении противоположности (контрарности) находятся суждения с одинаковыми терминами, являющиеся общими по количеству и имеющие разное качество. Из истинности одного из противоположных суждений логически следует ложность другого согласно закону контрарного противоречия (SaP |= ØSeP, SeP |= ØSaP), но ложность одного из них оставляет другое суждение неопределённым.
V Пример
«Если верно, что ни один из нас не лжёт, то неверно, что всякий из нас говорит ложь», но если «Неверно, что все птицы улетают на юг», то следует ли из этого что-либо с логической необходимостью в отношении истинности или ложности суждения «Все птицы не улетают на юг»?
В отношении противоречия (контрадикторности) находятся суждения с одинаковыми терминами, имеющие как разное качество, так и разное количество. Такие суждения не могут быть ни одновременно истинными, ни одновременно ложными, поэтому из истинности одного из них с логической необходимостью следует ложность другого, а из ложности — истинность другого: SaP |= ØSoP, SiP |= ØSeP, SeP |= ØSiP, SoP |= ØSaP, ØSaP |= SoP, ØSiP |= SeP, ØSeP |= SiP, ØSoP |= ØSaP.
V Пример
Дедуктивным является рассуждение:
«Если верно, что все присутствовавшие на лекции поняли излагавшийся учебный материал, то неверно, что некоторые из присутствовавших на этой лекции не поняли излагавшегося учебного материала».