Комплексное воздействие микроклиматических факторов на организм

Температура

Атмосферный воздух нагревается главным образом от почвы и воды за счет поглощенной ими солнечной энер­гии. Этим объясняется более низкая температура перед восходом солнца и максимальная—между 13—15 ч, когда поверхностный слой земли максимально прогревается.

Температура воздуха весьма существенно влияет на микроклимат помещений (климат внутренней среды помеще­ний, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей).

Температура воздуха зависит от географической широты. Так, самая высокая средняя годовая температура на земном шаре наблюдается в южных широтах—странах Африки, Южной Америки, Средней Азии. Здесь температура воздуха в теплое время года может достигать 63°С, в холодный период понижаться до - 15°С. Самая низкая температура на нашей планете отмечается в Антарктиде, где она может понижаться до -94°С. Температура воздуха значительно сни­жается с увеличением высоты над уровнем моря. Нагретые приземные слои воздуха поднимаются и постепенно охлаж­даются в среднем на 0,6°С на каждые 100 м подъема. От экватора к полюсам дневные колебания температуры уменьшаются, годовые — увеличиваются. Вода морей и океа­нов, аккумулируя тепло, смягчает климат, делает его более теплым, уменьшает суточные и сезонные колебания температуры.

Под воздействием температуры происходят различные физиологические сдвиги во многих системах организма. В зависимости от величины температуры могут наблюдать­ся явления перегревания или охлаждения. При повышен­ных температурах (25—35°С) окислительные процессы в организме несколько снижаются, но в дальнейшем они могут возрастать. Дыхание учащается и становится поверх­ностным. Легочная вентиляция вначале возрастает, а затем остается без изменений.

Длительное воздействие высокой температуры приводит к значительному нарушению водно-солевого и витаминного обмена. Особенно характерны эти изменения при выпол­нении физической работы. Усиленное потоотделение ведет к потере жидкости, солей и водорастворимых витаминов. Например, при тяжелой работе в условиях высокой тем­пературы воздуха может выделяться до 10 л и более пота, а с ним до 30-40 г хлорида натрия. Установлено, что потеря 28—30 г хлорида натрия ведет к понижению желу­дочной секреции, а больших количеств—к мышечным спаз­мам и судорогам. При сильном потоотделении потери водорастворимых витаминов (С, B1, В2) могут достигать 15—25% суточной потребности.

Значительные изменения при воздействии температуры отмечаются в сердечно-сосудистой системе. Усиливается кровоснабжение кожи и подкожной клетчатки за счет рас­ширения системы капилляров, учащается пульс. При одной и той же физической нагрузке частота пульса тем больше, чем выше температура воздуха. Частота сердечных сокра­щений возрастает вследствие раздражения терморецепторов, повышения температуры крови и образования продуктов метаболизма. Артериальное давление, как систолическое, так и в большей степени диастолическое, при действии высоких температур снижается. Повышается вязкость крови, увеличивается содержание гемоглобина и эритроцитов.

Высокая температура оказывает неблагоприятное влия­ние на ЦНС, проявляющееся в ослаблении внимания, замедлении двигательных реакций, ухудшении координации движений.

Длительное воздействие высокой температуры на орга­низм может привести к ряду заболеваний. Наиболее час­тым осложнением является перегревание (тепловая гипертермия), возникающее при избыточном накоплении тепла в организме. Различают легкую и тяжелую формы пере­гревания. При легкой форме основным признаком гипертермии является повышение температуры тела до 38°С и более. У пострадавших наблюдаются гиперемия лица, обильное потоотделение, слабость, головная боль, голово­кружение, искажение цветового восприятия предметов (ок­раска в красный, зеленый цвета), тошнота, рвота.

В тяжелых случаях перегревание протекает в форме теплового удара. Наблюдаются быстрый подъем темпера­туры до 41°С и выше, падение артериального давления, потеря сознания, нарушение состава крови, судороги. Ды­хание становится частым (до 50—60 в минуту) и поверх­ностным. При оказании первой помощи необходимо при­нять меры к охлаждению организма (прохладный душ, ванна и др.).

В результате нарушения водно-солевого баланса при высокой температуре может развиться судорожная болезнь, а при интенсивном прямом облучении головы — солнечный удар.

Под воздействием низких температур снижается темпера­тура кожи, особенно открытых участков тела. При этом отмечаются одновременно ухудшение тактильной чувстви­тельности и понижение сократительной способности мы­шечных волокон. При значительном охлаждении изменя­ется функциональное состояние ЦНС, что обусловливает ослабление болевой чувствительности, адинамию, сонли­вость, снижение работоспособности. Понижение темпера­туры отдельных участков тела приводит к болевым ощу­щениям, сигнализирующим об опасности переохлаждения.

Местное и общее охлаждение организма является при­чиной простудных заболеваний: ангин, заболеваний верхних дыхательных путей, пневмоний, невритов, радикулитов, миозитов и др.

Действие температуры на организм определяется не только ее абсолютной величиной, но и амплитудой коле­баний. Организм труднее приспосабливается к частым и резким колебаниям температуры. Многое зависит и от того, с какой влажностью и скоростью движения воздуха сочетается этот фактор. Повышенная влажность при низ­ких температурах, увеличивая теплопроводность воздуха, усиливает его охлаждающие свойства: Особенно возрастает отдача тепла с увеличением подвижности воздуха.

Влажность

Влажность воздуха обусловливается испарением воды с поверхности морей и океанов. Вертикальный и горизонталь­ный воздухообмен способствует распространению влаги в тропосфере Земли. Относительная влажность подвержена суточным колебаниям, что связано прежде всего с измене­нием температуры. Чем выше температура воздуха, тем большее количество водяных паров требуется для его полного насыщения. При низких температурах необходимо меньшее количество водяных паров для максимального насыщения.

В гигиеническом отношении наиболее важное значение имеют относительная влажность и дефицит насыщения. Эти показатели дают представление о степени насыщения воз­духа водяными парами и свидетельствуют о возможности отдачи тепла путем испарения. С возрастанием дефицита влажности увеличивается способность воздуха к приему водяных паров. В этих условиях более интенсивно будет протекать отдача тепла в результате потоотделения (табл. 1).

Таблица 1. Влияние влажности воздуха при различных его температурах на выделение влаги человеческим организмом

Температура окружающего воздуха, 0С Потеря воды через кожу и легкие, г/ч  
при очень сухом воздухе   при очень влажном воздухе
36,3 54,1 75,4 9,0 15,3 23,9

В зависимости от степени влажности воздуха по-разному ощущается действие температуры. Высокая температура воздуха в сочетании с низкой его влажностью переносит­ся человеком значительно легче, чем при высокой влаж­ности. С увеличением влажности воздуха снижается отдача тепла с поверхности тела испарением.

Насыщение воздуха водяными парами в условиях низ­кой температуры будет способствовать переохлаждению тела. Важно знать, что потоотделение и испарение при темпе­ратуре тела выше 35°С являются основными путями отдачи тепла в окружающую среду. Установлено, что при обычных метеорологических условиях наиболее оптимальной отно­сительной влажностью является 40—60%.

Скорость движения

Как известно, воздух практически постоянно находится в движении, что связано с неравномерностью нагрева зем­ной поверхности солнцем. Разница в температуре и давле­нии обусловливает перемещение воздушных масс. Движе­ние воздуха принято характеризовать направлением и ско­ростью. Отмечено, что для каждой местности характерна закономерная повторяемость ветров преимущественно одного направления. Для выявления закономерности направлений используют специальную графическую величину-розу вет­ров представляющую собой линию румбов, на которых отложены отрезки, соответствующие по длине, числу и силе ветров определенного направления, выраженного в процентах по отношению к общему их числу. Знание этой закономерности позволяет правильно осуществлять взаимо­расположение и ориентацию жилых зданий, больниц, ап­тек, санаториев, промышленных предприятий и др.

Скорость движения воздуха определяется числом мет­ров, пройденных им в секунду. Скорость перемещения воздушных масс играет существенную роль в процессах теплообмена организма. Сильный ветер резко увеличивает теплоотдачу путем конвекции и испарения пота. В жаркие дни ветер оказывает благоприятное влияние на организм, так как предохраняет его от перегревания. При низких температурах и высокой влажности движение воздуха спо­собствует переохлаждению.

Сильный и продолжительный ветер оказывает неблаго­приятное влияние на нервно-психическое состояние, на общее самочувствие, затрудняет выполнение физической работы, увеличивает нагрузку при движении. Наконец, гигиеническое значение движения воздуха заключается в том, что оно способствует вентиляции жилых, общественных зданий и промышленных помещений, а также играет важ­ную роль в удалении и самоочищении поступающих в атмосферу загрязнений (пыль, пары, газы и др.).

Атмосферное давление

Жизнь человека протекает в основном на поверхности Земли на высоте, близкой к уровню моря. При этом организм находится под постоянным давлением столба воздуха окружающей атмосферы. На уровне моря эта ве­личина равна 101,3 кПа (760 мм рт. ст., или 1 атм). Вследствие того, что наружное давление полностью урав­новешивается внутренним, наш организм практически не ощущает тяжести атмосферы.

Атмосферное давление подвержено суточным и сезон­ным колебаниям. Чаще всего эти изменения не превышают 200—300 Па (20—30 мм рт. ст.). Здоровые люди обычно не замечают этих колебаний и они практически не ока­зывают влияния на их самочувствие. Однако у определен­ной категории, например лиц пожилого возраста, страдаю­щих ревматизмом, невралгиями, гипертонической болезнью и другими заболеваниями, эти колебания вызывают изме­нение самочувствия, приводят к нарушению отдельных функций организма.

В промышленности, авиации, на водном транспорте выполняются работы, связанные с воздействием повышен­ного или пониженного атмосферного давления.

Пониженное атмосферное давление. С дей­ствием пониженного атмосферного давления человек стал­кивается при полетах на летательных аппаратах, восхож­дении на горы, геологических изысканиях в горах, работе на открытых горных рудниках и т. д.

Подъем и пребывание на высоте связаны с воздейст­вием на организм пониженного барометрического давления и низкого парциального давления газов, в первую очередь кислорода. Эти факторы обусловливают симптомокомплекс так называемой горной болезни, в развитии которой ве­дущую роль играет кислородное голодание. В результате нарушения деятельности ЦНС появляются усталость, сонли­вость, тяжесть в голове, головная боль, нарушение коор­динации движений, повышенная возбудимость, сменяющаяся апатией и депрессией. При более глубокой гипоксии отме­чаются нарушения работы сердца: тахикардия, пульсация артерий (сонной, височной и др.), изменения ЭКГ. Нару­шается моторная и секреторная функции желудочно-кишечного тракта, меняется периферический состав крови.

Более значительное и резкое падение атмосферного давления может вызвать явления декомпрессии. Это опас­ное осложнение возникает в результате выделения газов, обычно растворенных при нормальном барометрическом давлении, из крови и тканевых жидкостей и сопровожда­ется болями в мышцах, суставах, костях. Наиболее гроз­ным осложнением декомпрессионной болезни является воз­душная эмболия.

Для повышения устойчивости организма к условиям пониженного атмосферного давления необходима аккли­матизация. Специфические методы тренировки с учетом действия отмеченных факторов позволяют повысить репро­дуктивную способность костного мозга, увеличить содержа­ние эритроцитов и гемоглобина в крови. При этом воз­растает кислородная емкость крови, что облегчает диффу­зию кислорода из крови в ткани. В процессе акклимати­зации улучшается распределение крови, в частности уве­личивается кровоснабжение мозга и сердца за счет расши­рения их кровеносных сосудов и сужения сосудов кожи, мышц и некоторых внутренних органов.

К мероприятиям по акклиматизации к кислородной не­достаточности следует отнести тренировки в барокамерах, пребывание в условиях высокогорья, закаливание и др. Положительное влияние оказывает прием повышенных ко­личеств витаминов С, B1, B2, B6, PP, фолиевой кислоты и витамина Р.

Повышенное атмосферное давление. Дей­ствию повышенного барометрического давления подверга­ется определенная категория лиц; водолазы, рабочие под­водных и подземных строительных работ. Кратковремен­ному (мгновенному) воздействию высокого давления под­вергаются лица при разрыве бомб, мин, снарядов, а также при выстрелах и запусках ракет.

Чаще всего работа в условиях повышенного атмосфер­ного давления осуществляется в специальных камерах-кес­сонах или скафандрах. При работе в кессонах различают три периода: компрессия, пребывание в условиях повышен­ного давления и декомпрессия. Компрессия характеризуется незначительными функциональными нарушениями: шум в ушах, заложенность, болевые ощущения вследствие механического давления воздуха на барабанную пере­понку.

Тренированные люди эту стадию переносят легко, без неприятных ощущений.

Пребывание в условиях повышенного давления обычно сопровождается легкими функциональными нарушениями: урежением пульса и частоты дыхания, снижением мак­симального и повышением минимального артериального давления, понижением кожной чувствительности и слуха. Наблюдается усиление перистальтики кишечника, повыше­ние свертываемости крови, уменьшение содержания гемо­глобина и эритроцитов. Важной особенностью этой фазы является насыщение крови и тканей растворенными газами (сатурация), особенно азотом. Этот процесс продолжается до тех пор, пока давление газов в организме и окружаю­щей среде не достигнет равновесия.

В период декомпрессии в организме наблюдается об­ратный процесс—выведение из тканей газов (десатурация). При правильно организованной декомпрессии растворенный азот в виде газа выделяется через легкие (за 1 мин— 150 мл азота). Однако при быстрой декомпрессии азот не успевает выделяться и остается в крови и тканях в виде пузырьков, причем наибольшее количество их скап­ливается в нервной ткани и подкожной клетчатке. Отсюда и из других органов азот поступает в кровеносное русло и вызывает газовую эмболию (кессонная болезнь). Харак­терным признаком этого заболевания являются тянущие боли в области суставов и мышц. При эмболии кровеносных сосудов ЦНС наблюдаются головокружение, головная боль, расстройство походки, речи, судороги. В тяжелых случаях возникают парезы конечностей, расстройство мочевыделения, поражаются легкие, сердце, глаза и т. д. Для предупреж­дения возможного развития кессонной болезни важны пра­вильная организация декомпрессии и соблюдение рабо­чего режима

Комплексное воздействие микроклиматических факторов на организм.

В процессе жизнедеятельности организм человека испы­тывает комплексное воздействие физических факторов воз­душной среды: температуры, влажности, барометрического давления и др. В зависимости от сочетания и величины этих факторов может отмечаться как благоприятное, так и отрицательное воздействие на организм. Знание законо­мерностей комплексного действия на организм физических факторов позволяет определить параметры таких сочетаний, которые соответствовали бы оптимальным условиям жизнедеятельности организма.

Как известно, нормальная жизнедеятельность организма и высокая работоспособность возможны лишь в том слу­чае, если сохраняется температурное постоянство организма в определенных границах (36,1—37,2°С), имеется тепловое равновесие его с окружающей средой, т.е. соответствие между процессами теплопродукции и теплоотдачи. В слу­чае преобладания одного процесса над другим возможно перегревание или переохлаждение организма. Так, интен­сивная потеря тепла вызывает переохлаждение, обусловли­вающее снижение резистентности организма к воздействию внешних факторов, вследствие чего увеличивается чис­ло простудных заболевании, обостряются хронические про­цессы

Несмотря на значительные колебания микроклиматиче­ских факторов окружающей среды, в организме человека поддерживается постоянная температура тела. Это обуслов­лено деятельностью механизмов химической и физической терморегуляции, находящихся под контролем ЦНС. Под химической терморегуляцией понимают способность орга­низма изменять интенсивность обменных процессов, что и определяет увеличение или уменьшение образующегося тепла. Физическая терморегуляция осуществляется за счет рефлекторного расширения или сужения поверхностных сосудов кожи.

Тепло вырабатывается всем организмом, но наибольшее количество его образуется в мышцах и печени. В зави­симости от состояния температуры воздуха основной обмен изменяется в широких границах. Так, с понижением температуры окружающей среды (ниже 15°С) теплопродукция организма возрастает, при температуре от 15 до 25°С на­блюдается ее постоянство, а с повышением температуры от 25 до 35°С теплопродукция сначала уменьшается, а за­тем увеличивается (при температуре 35°С и выше). Эта закономерность хорошо прослеживается на цифрах кислорода как показателя основного обмена (рис. 1).

Комплексное воздействие микроклиматических факторов на организм - student2.ru

Рис. 1. Изменение об­мена веществ (по по­треблению кислоро­да)

в зависимости от температуры воздуха.

Теплопродукция зависит также от интенсивности и тя­жести физической нагрузки. Кроме того, тепло поступает извне за счет солнечной радиации, от нагретых предметов, в результате приема горячей пищи и др.

Одновременно с процессами накопления тепла в организме непрерывно происходит выделение его во внешнюю среду. Теплоотдача осуществляется лучеиспусканием (радиацион­ный путь), проведением (конвекция и кондукция), пото­отделением и испарением влаги с поверхности кожи. Пе­редача тепла конвекцией происходит за счет нагревания прилегающего к телу воздуха. При кондукции тепло от­дается поверхностям окружающих предметов, с которыми соприкасается человек. Потеря тепла за счет излучения происходит при наличии предметов и ограждений, имеющих более низкую температуру, чем температура кожи человека. Отдача тепла происходит в результате испарения пота с поверхности кожи. Наконец, незначительное количество тепла отдается во внешнюю среду с выдыхаемым воздухом и физиологическими отправлениями.

Количество отдаваемого организмом тепла в значитель­ной степени зависит от физических свойств воздушной среды. Так, передача тепла конвекцией возрастает с увели­чением скорости перемещения воздуха, разницы температуры тела человека и воздуха, площади поверхности тела. При уменьшении разницы в температурах отдача тепла конвек­цией снижается, а при температуре 35-36°С и выше со­всем прекращается. Существенное влияние на отдачу тепла конвекцией оказывает скорость перемещения воздушных масс (табл. 2).

Таблица 2. Динамика температуры кожи при различных метеорологичес­ких условиях.

Температура воздуха, °С Температура кожи, °С
при неподвижном воздухе при движении воздуха разница в темпе­ратуре кожи
18,1 29,5 22,1 7,4
20,7 30,2 24,7 5,5
23,5 31,5 25,0 6,5
27,5 33,5 31,0 2,5
34,0 34,6 34,0 0,6

Поверхность тела человека является источником тепло­излучения. Отдача тепла излучением осуществляется по тому же механизму, который свойствен каждому телу, имеющему температуру выше абсолютного нуля (273°К). При этом количество излучаемого тепла зависит от тем­пературы окружающих стен помещения, предметов, ограж­дений и т. д. Отдача тепла излучением возрастает с уве­личением разницы между температурой тела человека и температурой окружающих предметов. Если температура окружающих человека поверхностей превышает 35°С,тоотдача тепла излучением прекращается и, наоборот, наблю­дается поглощение тепла. Резкое нарушение радиационного баланса может привести к перегреванию или охлаждению организма. При разности температур человека и среды, близкой к нулю, или в том случае, когда температура окружающего воздуха выше температуры кожи, основным процессом теплоотдачи является испарение.

Интенсивность испарения зависит от влажности воздуха и его скорости, так как эти факторы определяют коэффи­циент массоотдачи влаги. Так, при температуре воздуха выше 35°С и умеренной влажности потеря влаги испаре­нием может достигать 5 л, а при более высоких темпера­турах —10 л/сут. При испарении 1 г воды теряется около 2,51 кДж (0,6 ккал) тепла.

Изучение сочетанного действия ряда физических факто­ров на организм позволило определить наиболее оптималь­ные их величины для жилых помещений: температура 18—20°С, влажность 40—60%, скорость движения воздуха 0,1-0,2 м/с.

В производственных условиях данные факторы нормиру­ются по оптимальным и допустимым величинам.

Оптималь­ные величины характеризуются таким сочетанием парамет­ров температуры, относительной влажности и скорости дви­жения воздуха, которые при длительном и систематическом воздействии на организм человека обеспечивают наиболее благоприятные условия труда, способствуют высокой рабо­тоспособности.

Допустимые микроклиматические условия — сочетание параметров микроклимата, которые могут обусловить преходящие и быстро нормализующиеся изменения в организ­ме человека, не выходящие за пределы физиологических приспособительных колебаний.

Таким образом, с учетом комплексного воздействия микроклиматических факторов устанавливаются наиболее благоприятные сочетания их для жизнедеятельности человека и его работоспособности. При этом следует отметить, что состояние теплового комфорта зависит также от вида одежды, индивидуальных особенностей человека, трени­рованности и др.

Наши рекомендации