Процессы. Понятие процесса. Состояние процесса
Понятие процесса
Понятие процесса характеризует некоторую совокупность набора исполняющихся команд, ассоциированных с ним ресурсов (выделенная для исполнения память или адресное пространство, стеки, используемые файлы и устройства ввода-вывода и т. д.) и текущего момента его выполнения (значения регистров, программного счетчика, состояние стека и значения переменных), находящуюся под управлением операционной системы. Не существует взаимно-однозначного соответствия между процессами и программами, обрабатываемыми вычислительными системами. Как будет показано далее, в некоторых операционных системах для работы определенных программ может организовываться более одного процесса или один и тот же процесс может исполнять последовательно несколько различных программ. Более того, даже в случае обработки только одной программы в рамках одного процесса нельзя считать, что процесс представляет собой просто динамическое описание кода исполняемого файла, данных и выделенных для них ресурсов. Процесс находится под управлением операционной системы, поэтому в нем может выполняться часть кода ее ядра (не находящегося в исполняемом файле!), как в случаях, специально запланированных авторами программы (например, при использовании системных вызовов), так и в непредусмотренных ситуациях (например, при обработке внешних прерываний).
Состояния процесса
При использовании такой абстракции все, что выполняется в вычислительных системах (не только программы пользователей, но и, возможно, определенные части операционных систем), организовано как набор процессов. Понятно, что реально на однопроцессорной компьютерной системе в каждый момент времени может исполняться только один процесс. Для мультипрограммных вычислительных систем псевдопараллельная обработка нескольких процессов достигается с помощью переключения процессора с одного процесса на другой. Пока один процесс выполняется, остальные ждут своей очереди.
Как видим, каждый процесс может находиться как минимум в двух состояниях: процесс исполняется и процесс не исполняется. Диаграмма состояний процесса в такой модели изображена на рис. 2.1.
Рис. 2.1. Простейшая диаграмма состояний процесса
Процесс, находящийся в состоянии процесс исполняется, через некоторое время может быть завершен операционной системой или приостановлен и снова переведен в состояние процесс не исполняется. Приостановка процесса происходит по двум причинам: для его дальнейшей работы потребовалось какое-либо событие (например, завершение операции ввода-вывода) или истек временной интервал, отведенный операционной системой для работы данного процесса. После этого операционная система по определенному алгоритму выбирает для исполнения один из процессов, находящихся в состоянии процесс не исполняется, и переводит его в состояние процесс исполняется. Новый процесс, появляющийся в системе, первоначально помещается в состояние процесс не исполняется.
Это очень грубая модель, она не учитывает, в частности, то, что процесс, выбранный для исполнения, может все еще ждать события, из-за которого он был приостановлен, и реально к выполнению не готов. Для того чтобы избежать такой ситуации, разобьем состояние процесс не исполняется на два новых состояния: готовность и ожидание (см. рис. 2.2).
Рис. 2.2. Более подробная диаграмма состояний процесса
Всякий новый процесс, появляющийся в системе, попадает в состояние готовность. Операционная система, пользуясь каким-либо алгоритмом планирования, выбирает один из готовых процессов и переводит его в состояние исполнение. В состоянии исполнение происходит непосредственное выполнение программного кода процесса. Выйти из этого состояния процесс может по трем причинам:
операционная система прекращает его деятельность;
он не может продолжать свою работу, пока не произойдет некоторое событие, и операционная система переводит его в состояние ожидание ;
в результате возникновения прерывания в вычислительной системе (например, прерывания от таймера по истечении предусмотренного времени выполнения) его возвращают в состояние готовность.
Из состояния ожидание процесс попадает в состояние готовность после того, как ожидаемое событие произошло, и он снова может быть выбран для исполнения.
Наша новая модель хорошо описывает поведение процессов во время их существования, но она не акцентирует внимания на появлении процесса в системе и его исчезновении. Для полноты картины нам необходимо ввести еще два состояния процессов: рождение и закончил исполнение (см. рис. 2.3).
Рис. 2.3. Диаграмма состояний процесса, принятая в курсе
Теперь для появления в вычислительной системе процесс должен пройти через состояние рождение. При рождении процесс получает в свое распоряжение адресное пространство, в которое загружается программный код процесса ; ему выделяются стек и системные ресурсы; устанавливается начальное значение программного счетчика этого процесса и т. д. Родившийся процесс переводится в состояние готовность. При завершении своей деятельности процесс из состояния исполнение попадает в состояние закончил исполнение.
В конкретных операционных системах состояния процесса могут быть еще более детализированы, могут появиться некоторые новые варианты переходов из одного состояния в другое. Так, например, модель состояний процессов для операционной системы Windows NT содержит 7 различных состояний, а для операционной системы Unix – 9. Тем не менее, так или иначе все операционные системы подчиняются изложенной выше модели.