Геологическая хронология земной коры

Геохронология – последовательность геологических событий во времени, их продолжительность и соподчиненность:

– относительная геохронология отражает естественные этапы в истории развития Земли, основанная на принципе последовательности напластовывания и использует метод биостратиграфических построений;

– абсолютная геохронология определяет возраст и длительность подразделений геохронологической шкалы в промежутках времени, равных современному астрономическому году (в астрономических единицах). Она основана на изучении продуктов радиоактивного распада в минералах.

Геохронологическая (геоисторическая) шкала – иерархическая система геохронологических подразделений, эквивалентных единицам общей стратиграфической шкалы.

Стратиграфическое подразделение (единица) – совокупность горных пород, составляющих определенное единство по комплексу признаков (особенностям вещественного состава, органических остатков), который позволяет выделить ее в разрезе и проследить по площади.

Закономерности развития и образования земной коры изучает историческая геология. Возраст горных пород бывает абсолютным и относительным.

Абсолютный возраст – продолжительность существования (жизни) породы, выраженная в годах. Для его определения применяют методы, основанные на использовании процессов радиоактивных превращений, которые имеют место в некоторых химических элементах (уран, калий, рубидий), входящих в состав пород. Возраст магматических пород, а также химических осадков равен возрасту составляющих их минералов. Другие породы моложе входящих в их состав минералов.

Соотношение количеств совместно находящихся радиоактивного исходного изотопа и образовавшегося из него устойчивого элемента дает представление о возрасте вмещающих их пород. Методы определения абсолютного возраста получили свое название от продуктов радиоактивного распада: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и др. Так, зная, какое количество свинца образуется из 1 г урана в год, определяя их совместное содержание в данном минерале, можно найти абсолютный возраст минерала и той горной породы, в которой он находится. По углероду 14С, период полураспада которого равен 5568 лет, можно установить возраст образований, появившихся позднее. Установить абсолютный возраст горных пород можно по геохронологической шкале земной коры (табл.). Определение абсолютного возраста горных пород весьма трудная задача, решение которой стало возможным только в 50-тые годы XX века.

Геохронологическая шкала земной коры

Эоны (эонотемы) Эра (группа) Период (система) Типичные организмы Абс. возраст, млн. лет
Неохрон (фанерозой)   Кайнозойская Kz («эра новой жизни») Четвертичный (антропогенный) Q Человек 1,5-2,0
Третичный Tr Неоген N Млекопитающиеся, цветковые растения 25-27
Палеоген P 60-66
Мезозойская Mz («эра сред-ней жизни») Меловой К Головоногие, моллюски и пресмыкающиеся 132-142
Юрский J 190-200
Триасовый T 230-250
  Палеозойская Pz («эра древней жизни») Пермский P Амфибии и споровые 275-295
Каменноугольный C 340-360
Девонский D Рыбы, плеченогие 400-420
Силурийский S Первые беспозвоночные 425-455
Ордовикский O 480-520
Кембрийский Cm Более 570
Палеохрон (криптозой)   Протерозойская PR     –     Редкие остатки примитивных форм 2500-2700
Архейская (археозойская) AR До 4500
Планетарная стадия Земли Свыше 4500

Чем моложе определяемый возраст минерала, тем большее количество его требуется для анализа, так как не успевают накопиться продукты распада.

Минимальное количество минерала, требуемое для определения их возраста, г

Минерал Примерно ожидаемый возраст, млн. лет
1 000 2 000
Уранит 0,5 0,2 0,1
Монацит 1,0 0,4 0,2
Циркон 5,0 2,0 1,0
Биотит 20,0 15,0 10,0

При оценке относительного возраста различают более древние и более молодые горные породы. Проще определять относительный возраст у осадочных пород при ненарушенном их залегании (близко к горизонтальному залеганию). При складчатом расположении – иногда невозможно. Затруднительно и при наличии пород, слагающих участки, удаленные друг от друга.

Палеонтология – наука, устанавливающая закономерность развития жизни на Земле путем изучения останков животных и растительных организмов (окаменелости), имеющихся в толщах осадочных пород. Время образования той или иной породы соответствует времени гибели организмов, останки которых оказались захороненными при накоплении осадков. Трилобиты, папоротники, хвощи, лепидофиты, археоцитат, эхиносферит, кальцеола, кистеперые рыбы, каменный уголь …).

При этом используют два метода:

Стратиграфическийметод применяют для толщ с ненарушенным горизонтальным залеганием слоев (рис. 11). Этот метод нельзя применить при складчатом расположении слоев. Считают, что нижележащие слои являются более древними, чем вышележащие. Молодым является слой 3, а слои 1 и 2 более древние.

Геологическая хронология земной коры - student2.ru

Рис. 11. Залегание слоев: а) – горизонтальное залегание слоев; б) – в виде складок

Палеонтологический метод позволяет определять возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на различных участках. Каждому отрезку геологического времени соответствует определенный состав жизненных форм.

Все геологическое время разделили на отрезки. Для слоев пород, которые образовались в эти отрезки времени, были предложены свои названия, что позволило создать стратиграфическую шкалу (табл.).

Стратиграфическая шкала

Геохронологическая шкала времени (геохронологические подразделения) Стратиграфическая шкала слоев пород* (единицы общей шкалы)
Эон Эонотема
Эра Эратотема (группа)
Период Система
Эпоха Отдел
Век Ярус
Фаза (время) Зона (хронозона)
Пора Звено (для четвертичной системы)

* - различают и дополнительные единицы: подотдел – часть отдела; надъярус – несколько ярусов; подъярус – часть яруса; подзона – часть зоны

Наиболее крупные промежутки времени – эоны, а толщи пород, образовавшиеся за это время – эонотемы. Каждый эон делят на эры. Каждая эраподразделяется на периоды, периоды – на эпохи, группы – на системыи т.д. Самый короткий отрезок – век. Век – промежуток времени, в течение которого отложилась толща горных пород, образующих ярус. Продолжительность века в палеозое ~ 10 млн. лет, в мезозое и кайнозое ~ 5…6 млн. лет.

Представленная шкала многократно корректируется.

Инженеры-строители должны знать, что понимают под возрастными индексами горных пород и использовать это в своей работе, чтении геологической документации (карт и разрезов) при проектировании зданий и сооружений.

Особый интерес вызывает четвертичный период (табл.).

Схема расчленения четвертичного периода (системы)

Эпоха Отдел Индекс
Древнечетвертичная Нижнечетвертичный QI
Среднечетвертичная Среднечетвертичный QII
Позднечетвертичная Верхнечетвертичный QIII
Современная Современный QIY

Отложения четвертичного периода распространены почти повсеместно, их толщи содержат останки древнего человека и предметы его обихода. К толщам этих отложений приурочены месторождения россыпного золота и других ценных металлов. Многие породы четвертичного периода являются сырьем для производства строительных материалов. Большое место занимают отложения культурного слоя, появляющегося в результате деятельности человека. Он отличаются значительной рыхлостью и большой неоднородностью. Его наличие может осложнить строительство зданий и сооружений.

Геологическая хронология земной коры - student2.ru

Рис. 12. Окаменелости палеогенового и неогенового периодов: а), б), в), г), д), е), и) – брюхоногие моллюски; ж), з), к), л) – двустворчатые моллюски

Геологическая хронология земной коры - student2.ru

Рис. 13. Окаменелости триасового периода: а), в), г), д), з) – двустворчатые моллюски; б) – брахиопода; е) – аммонит, ж) – криноидея

Геологическая хронология земной коры - student2.ru

Рис. 14. Окаменелости юрского периода: а) – устрицы; б), е), з), к) – аммониты; в) – белемнит; г) – посейдония; д) – двустворчатый моллюск; ж), и) – брахиоподы

Геологическая хронология земной коры - student2.ru

Рис. 15. Окаменелости мелового периода: а), е) – двустворчатые моллюски; б), в) – белемниты; г), д), з) – аммониты; ж) – морские ежи

Геологическая хронология земной коры - student2.ru

Рис. 16. Окаменелости палеозойской эры: а) – трилобит; б), в), д), ж), л) – брахиоподы; г) – цефалопода; е) – криноидея; з) – аммонит; и) – морской бутон; к) – сигиллярия

ОПРЕДЕЛЕНИЕ АБСОЛЮТНОГО ВОЗРАСТА ГОРНЫХ ПОРОД

Наиболее распространенный стратиграфический метод основан на принципе перекрывания одних слоев и пачек осадочных пород другими. В связи с развитием органического мира в различных осадках встречаются остатки различных представителей растительного и животного царства, отражающие их эволюцию. На основании этих двух фактов была выработана стратиграфическая шкала, самой крупной единицей которой является эра. Всего выделяется пять эр:

а) археозойская, или архейская (от древнегреческих слов: «архе», начало и «зое», жизнь) – эра начала жизни;

б) протерозойская (от «протерос», первый) – эра первичной жизни;

в) палеозойская (от «паляйос», древний) – эра древней жизни;

г) мезозойская (от «мезос», средний) – эра средней жизни;

д) кайнозойская (от «кайнос», новый) – эра новой жизни.

В свою очередь эры разделены на периоды, а периоды – на эпохи.

Стратиграфическая шкала является относительной: она указывает лишь на последовательность образования горных пород и развитие органического мира. Стратиграфическая шкала наиболее близка к реальной жизни только для наиболее поздних геологических явлений. К таковым относятся ледниковые отложения Северной Европы. Изучение озерных осадков (ленточных глин), позволило довольно точно установить возраст оледенения. Чередование тонких прослоев глинистых и песчаных частиц соответствует зимнему и летнему периодам. Таким образом, подсчитано, что Валдайское оледенение на северо-западе России началось около 90 тыс. лет тому назад. Однако по мере изучения все более древних осадочных отложений такой способ становится все менее и менее совершенным в силу большой измененности первичных осадков.

Также несовершенны и другие приемы оценки геологического времени, в частности по количеству глинистых и песчаных частиц, приносимых реками в океан, и сопоставлению этих величин с общей мощностью осадочных пород.

Точное установление возраста геологических формаций стало возможным только после открытия радиоактивности. Изучение радиоактивных веществ показало, что на скорость радиоактивного распада не влияют ни температура, ни давление, ни электрические и магнитные поля, ни, наконец, действие химических реагентов. Поэтому, зная количество накопившихся продуктов распада радиоактивного вещества и период полураспада их, можно вычислить время, за которое эти продукты распада образовались, т. е. вычислить абсолютное время существования радиоактивного вещества (минерала).

Зная количество продуктов радиоактивного распада, количество нераспавшихся атомов и константу распада, можно вычислить абсолютный возраст образования данного изотопа. Для этого нужно, чтобы конечные продукты распада не покидали радиоактивного вещества и были учтены полностью. Кристаллическая структура минералов является приближенно закрытой системой и продукты распада практически не покидают ее. Чем больше в минерале находится продуктов распада, тем древнее этот минерал.

Поскольку периоды полураспада для изотопов урана, тория и калия очень велики, то продукты радиоактивного распада этих элементов не могут в достаточном количестве (для их точного учета) накопиться за короткий промежуток времени. Поэтому определения возраста по радиоактивным изотопам урана, тория и калия затруднены для молодых геологических образований и практически показывают уверенные значения, начиная с мезозоя.

Для определения абсолютного возраста нужно следить, чтобы образцы пород не были выветрелыми, разрушенными или подвержены механическим деформациям; минералы не должны содержать включений других минералов. Все это нужно для того, чтобы получить материал, не потерявший продуктов радиоактивного распада. Наиболее желателен отбор минералов, имеющих кристаллическую форму, ибо в этом случае мы можем быть наиболее уверенными в сохранности продуктов радиоактивного распада.

В настоящее время для определения абсолютного возраста используют следующие методы определения абсолютного возраста: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и т. д.

Урано-свинцовый метод. Для определения абсо­лютного возраста урано-свинцовым методом нужно знать весовые количества урана, тория и свинца в минерале, а также изотопный состав свинца. Определение изотопного состава свинца, как, впрочем, и других элементов, производится на специальных приборах – масс-спектрометрах. Природный свинец состоит из четырех изотопов: 204РЬ, 206РЬ, 207РЬ и 208РЬ; три последних обязаны своим происхождением радиоактивному распаду урана и тория, а 204РЬ является нерадиогенным, количество его в геологической истории Земли постоянно.

Зная весовое количество урана в минерале, определяемое химически, мы, тем самым, знаем, сколько у нас изотопов 238U и 235U, ибо содержание в природном уране в настоящее время всегда равно 0,714 %.

Для определения возраста урано-свинцовым методом могут быть использованы следующие минералы: уранинит, монацит, ортит, циркон, пирохлор, эшинит, ксенотим, самарскит и др. Для приближенного определения возраста можно использовать отношение 207РЬ/206РЬ, извлекая свинец из таких минералов, как полевые шпаты.

Калий-аргоновый метод основан на ядерном превращении 40К в 40Аг и 40Са. Природный калий состоит из изотопов: 39К – 93,08 %, 40К – 0,0119 % и41К – 6,91 %. Из них только 40К является разноактивным изотопом, большая часть его (88 %) превращается в 40Са и около 12 % – в 40Аг. Отсюда и возникли калий-кальциевый и калий-аргоновый методы. Калий-аргоновый метод в настоящее время весьма широко распространен. Аргон выделяют из образца на специальных установках прокаливанием при температуре 1200…1400 °С в вакууме. Возраст минерала определяется по отношению 40Аг/40К. Калий определяется химически дипикриламинатным или тетрафенилборатным методами, а чаще методом фотометрии пламени.

Для определения возраста породы калий-аргоновым методом используют калийсодержащие минералы: мусковит, биотит, глауконит, сильвин, амфиболы. В некоторых случаях, когда трудно выделить отдельные минералы, определяют возраст породы в целом (например, глинистый сланец).

Рубидиево-стронциевый метод дает более надежные результаты, чем калий-аргоновый. Для определения возраста по рубидиево-стронциевому методу могут быть использованы минералы калия, рубидий.

Как уже отмечалось, урано-свинцовый и калий-аргоновый, а также рубидиево-стронциевый методы мало удобны для установления возраста новейших геологических образований.

Для определения наиболее молодых геологических образований применяется радиоуглеродный метод, сущность которого состоит в следующем. В верхних слоях атмо­сферы под действием корпускулярного излучения Солнца на 14N образуется 14С. Период полураспада 14С равен примерно 5500 лет. Через этот промежуток времени количество 14С распадается наполовину, снова образуя 14N. Радиоактивный углерод 14С примешивается в атмосфере к обычному углероду и попадает во все объекты природы (организмы животных, растения, горные породы).

Пока организмы живы, содержание 14С в них постоянно, благодаря постоянному обмену с окружающей средой. Однако после их смерти обмен со средой прекращается и содержание 14С начинает уменьшаться. Замеряя количество 14С, можно определить возраст растительных остатков, прошедший со времени их смерти. Материалом для анализа является хорошо сохранившееся дерево, древесный уголь, торф, карбонатные илы. Этот метод применяется для установления возраста речных террас, морен, торфообразования, а также для датировки археологических памятников.

Погрешность составляет 100 лет. Радиоуглеродным методом устанавливают возраст объектов от 1000 до 30 000 лет.

Наиболее древние значения возраста горных пород и минералов близки к 3,5 млрд. лет (Кольский полуостров). Возраст отдельных минералов древних щитов Канады, Южной Африки также близок к 3 млрд. лет. Наиболее древний возраст имеют геологические объекты на щитах, которые считаются древнейшими геологическими структурами Земли. Если возраст гранитов достигает 3,5 млрд. лет, то естественно, что возраст земной коры должен быть значительно большим, ибо граниты внедрились в какие-то уже существовавшие породы, а если же они образовались ультраметаморфическим путем, т. е. в результате гранитизации, то, следовательно, гораздо раньше их уже существовали какие-то осадки. Древнейшие горные породы, которые удалось датировать, находятся в горном районе Нэрриер в Австралии. Возраст их 4,2 млрд. лет. В настоящее время считают, что возраст Земли составляет около 4,5 млрд. лет. Эти данные хорошо согласуются с данными о возрасте небесных пришельцев-метеоритов, которые не древнее 4,5 млрд. лет.

Как показали исследования, возраст горных пород Луны также оказался близким к 4,5 млрд. лет. Последнее обстоятельство, как и другие геохимические данные, указывает на единство земного, лунного и метеоритного вещества. Возраст Солнца примерно в десять раз больше возраста Земли.

Наши рекомендации