Основы технических измерений

Общая характеристика объектов измерений. Понятие видов и методов измерений. Характеристика средств измерений. Классификация и общая характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений.

Измерение— это нахождение значения физической величины опытным путем с помощью специальных технических средств.

Основным объектом измерения в метрологии являются физические величины.

Физическая величина применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.). Cуществуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника — на четырех, физика — на семи. ГОСТ 8.417 устанавливает семь основных физических величин — длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.

Измеряемые величины имеют качественную и количественную характеристики.

Формализованным отражением качественного различия измеряемых величин является их размерность. Размерность основных величин — длины, массы и времени — обозначается соответствующими заглавными буквами: dim l = L; dim m = М; dim t = Т.

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения.

Цель измерения — получение значения этой величины в форме, наиболее удобной для пользования. С помощью измерительного прибора сравнивают размер величины, информация о котором преобразуется в перемещение указателя, с единицей, хранимой шкалой этого прибора.

Измерения могут быть классифицированы:

по характеристике точности — равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ и в одних и тех же условиях), неравноточные (ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях);

по числу измерений в ряду измерений — однократные, многократные;

по отношению к изменению измеряемой величины — статические (измерение неизменной во времени физической величины, например измерение длины детали при нормальной температуре или измерение размеров земельного участка), динамические (измерение изменяющейся по размеру физической величины, например измерение переменного напряжения электрического тока, измерение расстояния до уровня земли со снижающегося самолета);

по выражению результата измерений — абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например, измерение силы основано на измерении основной величины массы и использовании физической постоянной — ускорения свободного падения и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы);

по общим приемам получения результатов измерений — прямые (измерение, при котором искомое значение физической величины получают непосредственно, например, измерение массы на весах, длины детали микрометром), косвенные (измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.

Метод измерений — прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы измерений классифицируют по нескольким признакам. По общим приемам получения результатов измерений различают: 1) прямой метод измерений; 2) косвенный метод измерений. Первый реализуется при прямом измерении, второй — при косвенном измерении.

По условиям измерения различают контактный и бесконтактный методы измерений.

Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерений основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают методы непосредственной оценки и метод сравнения с мерой.

При методе непосредственной оценки определяют значение величины непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.

При методе сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует ряд разновидностей этого метода: нулевой метод, метод измерений с замещением, метод совпадений

От средств измерений непосредственно зависит правильное определение значения измеряемой величины в процессе измерения. В число средств измерений входят:

меры;

измерительные приборы;

измерительные установки;

измерительные системы.

К ним относятся также измерительные преобразователи и вспомогательные средства измерений, которые не могут применяться для измерений самостоятельно, а служат для расширения диапазона, повышения точности, передачи результатов измерений на расстояние и обеспечения техники безопасности в процессе измерений.

Мера – это средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера воспроизводит величины, значения которых связаны с принятой единицей этой величины определенным, известным соотношением. Мера – это основа измерений.

Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Общим для всех измерительных приборов является наличие отсчетных устройств.

Измерительный преобразователь – это средство измерения, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения, но не поддающейся непосредственному восприятию наблюдателем.

Измерительная установка – совокупность функционально и конструктивно объединенных средств измерений и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для преобразования сигналов измерительной информации в форму, удобную для автоматической обработки, передачи, использования в автоматических системах управления и (или) доступную для непосредственного восприятия наблюдателем.

Метрологические свойства и метрологические характеристики средств измерений

Метрологические свойства СИ — это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.

Метрологические характеристики, устанавливаемые НД, называют нормируемыми метрологическими характеристиками.

Все метрологические свойства СИ можно разделить на две группы:

- свойства, определяющие область применения СИ;

- свойства, определяющие точность (правильность и прецизионность) результатов измерения.

К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.

Диапазон измерений — область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

Порог чувствительности — наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

К метрологическим свойствам второй группы относятся два главных свойства точности: правильность и прецизионность результатов.

Точность измерений СИ определяется их погрешностью.

Погрешность средства измерений — это разность между показаниями СИ и истинным (действительным) значением измеряемой величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением.

Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

по способу выражения — абсолютные, относительные;

по характеру проявления — систематические, случайные;

по отношению к условиям применения — основные, дополнительные.

Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой — классом точности.

Класс точности СИ — обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса.

Наши рекомендации