Действия над векторами в координатной форме.
Даны векторы ={ax, ay, az} и ={bx, by, bz}.
1. ( ± )={ax ± bx, ay ± by, az ± bz}.
2. l ={lax, lay, laz}, где l – скаляр.
Скалярное произведение векторов.
Определение:Под скалярным произведением двух векторов и
понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и .
Свойства скалярного произведения:
1. × =
2. ( + ) =
3.
4.
5. , где – скаляры.
6. два вектора перпендикулярны (ортогональны), если .
7. тогда и только тогда, когда .
Скалярное произведение в координатной форме имеет вид: ,где и .
Пример:Найти скалярное произведение векторов и
Решение:
Векторное проведение векторов.
Определение: Под векторным произведением двух векторов и понимается вектор, для которого:
-модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и
-этот вектор перпендикулярен перемножаемым векторам, т.е.
-если векторы неколлинеарны, то они образуют правую тройку векторов.
Свойства векторного произведения:
1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.
2.Векторный квадрат равен нуль-вектору, т.е.
3.Скалярный множитель можно выносить за знак векторного произведения, т.е.
4.Для любых трех векторов справедливо равенство
5.Необходимое и достаточное условие коллинеарности двух векторов и :
Векторное произведение в координатной форме.
Если известны координаты векторов и ,то их векторное произведение находится по формуле:
.
Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:
Пример:Вычислить площадь треугольника с вершинами (1;-1;2), (5;-6;2), (1;3;-1).
Решение: .
, , тогда площадь треугольника АВС будет вычисляться следующим образом:
,
Смешанное произведение векторов.
Определение:Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: .
Свойства смешанного произведения:
1.Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. .
2.При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный, т.е. .
3.Необходимое и достаточное условие компланарности трех векторов : =0.
4.Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку, т.е. .
Если известны координаты векторов ,то смешанное произведение находится по формуле:
Пример:Вычислить смешанное произведение векторов .
Решение:
Базис системы векторов.
Определение.Под системой векторов понимают несколько векторов, принадлежащих одному и тому же пространствуR.
Замечание. Если система состоит из конечного числа векторов, то их обозначают одной и той же буквой с разными индексами.
Пример.
Определение. Любой вектор вида = называется линейной комбинацией векторов . Числа - коэффициентами линейной комбинации.
Пример. .
Определение. Если вектор является линейной комбинацией векторов , то говорят, что вектор линейно выражается через векторы .
Определение. Система векторов называется линейно-независимой, если ни один вектор системы не может быть как линейная комбинация остальных векторов. В противном случае систему называют линейно-зависимой.
Пример. Система векторов линейно-зависима, т. к. вектор .
Определение базиса.Система векторов образует базис, если:
1) она линейно-независима,
2) любой вектор пространства через нее линейно выражается.
Пример 1.Базис пространства : .
2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .
Замечание.Чтобы найти базис данной системы векторов необходимо:
1) записать координаты векторов в матрицу,
2) с помощью элементарных преобразований привести матрицу к треугольному виду,
3) ненулевые строки матрицы будут являться базисом системы,
4) количество векторов в базисе равно рангу матрицы.