Актуальные проблемы физической культуры на современном этапе развития общества (гуманитарные, биологические, психологические, педагогические, экономические, организационные и др.).

Массовый спорт – это регулярные занятия и участия в соревнованиях представителей различных возростных групп в доступных им видах спорта с целью личностного развития и решения соц. Задач; формирования определенного количества двигательных навыков, психологических свойств относящихся к данному социуму, оздоровление, досуг. Проблемы: 1. Гуманитарные – духовное воспитание, просветительство, культурное воспитание, умственное развитие и тд, 2. Биологические – процессы которые происходят в организме в процессе занятий спортом, 3. Психологические – реакция психики на нагрузки, на социум, на стиль руководства и тд. 4. – Педагогические – подготовка кадров осуществляется управлением биологических и психологических проблем, 5.Экономические – финансирование (БЮДЖЕТНОЕ И НЕБЮДЖЕТНОЕ), 6. Организационные – управление системой (федерация, комитет и тд.)

8. Алгоритм и организация проведения массовых спортивных мероприятий. Спортивные соревнования представляют собой различные по характеру деятельности, масштабу и целям специально организованные мероприятия, участники которых в ходе неантагонистического соперничества в строго регламентированных условиях борются за первенство, достижения определенного результата, сравнивают свой уровень подготовленности в каком-либо виде спорта, спортивной дисциплине.

Выделяют первичные и вторичные функции спорт соревнований. Первичная (специфическая) - это определение иерархии мест участников состязаний, т.е. ранговая оценка всех соперников, нахождение победителя и призеров состязаний или фиксация рекорда. Вторичные (неспецифические) функции разнообразные: нормативная, подготовительная, селекционная, стимулирующая, самоутверждения, зрелищная, познавательная, информативная, творческая, престижная, управления, контроля, экономическая и многие др.

Современные информационные технологии. На соревнованиях по синхронным прыжкам на батуте (смешанных пар нет, только 2ж, или 2м) используется аппарат синхронности касания батута. На соревнованиях по парно-групповой акробатике верховное жюри может ссылаться на видеозапись. Выделяют 4 уровня соревнований: высший(мировоro и континетального масштaба, это - О.И, чемпионаты и кубки мираи континетна), первый уровень(гос. масштаба, чемnионаты и финалы кубков респyблик, входящих состав РФ),второй уровень (сор. npoвод. Федер. респ., вход.в сост РФ, краев, roродов М иСПБ), третий(сор. пpoвод. Федер. городов, районов, советами спорт. клубов и колективами ФК).

Соревнования бывают след. видов: основные (по видам сп. аэр. где пpoисходит распределение мест), квалификационные (в конце сезона, с цельюопpeделения спортивного уровня спортсмена), paзрядные (сор-ия спортсм. определ. разрядов),отборочные, заочныепроводятся одновременно в разных гoродах, после чего определяются места по кол-ву набранных очков). Все соревнования должны быть включены в календарь copевнований. Соревнования, не включенные в календарь соревнований соответствующий организации, не могут проводиться. Принцип составления КС - сверху вниз, т.е. должна соблюдаться субординация, сначала выше стoящая организация. Свой календарь, затем ниже стоящая. Все соревнования проводятся согласно положению, составленному и утвepжденному соответствующей организацией. Изменить положение, внести добавки может только гл. суд.кол. совместно с представителем организации. При распределении программы соревнований по дням и часам надо учитывать: кол-во видов, кол-во дней, кол-во участников. При возникновении спорных вопросов по пpoведению соревнований участники могут обращаться к судье с заявлениями. Сначала подаётся ycтное заявление сразу после официального объявления результатов. Если споpный вопрос не разрешен, подается письменный протест, не позднее 30 мин. после офиц. объявления результатов. Opгaнизация, проводящая соревнование должна обеспечить суд. коллегию необходимым инвентарём, оборудованием, протоколами, бланками. Контроль за спортивной базой ведут организаторы, проводящие соревнования, дирекция спорт. базы и гл. суд., коллегия.

9. Анатомо-физиологическая характеристика дыхательной системы. Дыхательные объемы и показатели внешнего дыхания (ЧД, МОД, МПК, кислородный долг). Участие эритроцитов в транспорте кислорода и углекислого газа. Влияние занятий физической культурой и спортом на дыхательную систему. Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ.

Трахея в нижней своей части делится на два бронха, каждый из которых, входя в легкие, древовидно разветвляется. Конечные мельчайшие разветвления бронхов (бронхиолы) переходят в закрытые альвеолярные годы, в стенках которых имеется большое количество шаровидных образований — легочных пузырьков (альвеол). Каждая альвеола окружена густой сетью капилляров. Общая поверхность всех легочных пузырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2. Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой — плеврой, такая же оболочка выстилает изнутри полость грудной клетки. Пространство, образованное между этими листами плевры, называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного при выдохе на 3—4 мм рт. ст., при вдохе — на 7—9.

Процесс дыхания — это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) характер. В покое обмен воздуха в легких происходит в результате дыхательных ритмических движений грудной клетки. При понижении в грудной полости давления в легкие в достаточной степени пассивно за счет разности давлений засасывается порция воздуха — происходит вдох. Затем полость грудной клетки уменьшается, и воздух из легких выталкивается — происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры. В покое при вдохе полость грудной клетки расширяет специальная дыхательная мышца — диафрагма, а также наружные межреберные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выражение пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается. При интенсивной физической работе в выдохе участвуют мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови — в атмосферный воздух, называют внешним дыханием; перенос газов кровью — следующий этап и, наконец, тканевое (или внутреннее) дыхание — потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии, чтобы обеспечить процессы жизнедеятельности организма.

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров кислород переходит из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород переходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма. Переход кислорода и углекислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов путем диффузии (перехода) обусловлен разностью парциального давления каждого из этих газов. Так, например, при атмосферном давлении воздуха 760 мм рт. ст. парциальное давление кислорода (р0а) в нем равно 159 мм рт. ст., а в альвеолярном — 102, в артериальной крови — 100, в венозной — 40 мм рт. ст. В работающей мышечной ткани р0а может снижаться до нуля. Из-за разницы в парциальном давлении кислорода происходит его поэтапный переход в легкие, далее через стенки капилляров в кровь, а из крови в клетки тканей.

Углекислый газ из клеток тканей поступает в кровь, из крови — в легкие, из легких — в атмосферный воздух, так как градиент парциального давления углекислого газа (СО2) направлен в обратную относительно р0а сторону (в клетках СО2 — 50—60, в крови — 47, в альвеолярном воздухе — 40, в атмосферном воздухе — 0,2 мм рт. ст.). При правильном дозировании физических нагрузок (при выполнении циклических упражнений) динамический контроль за простейшими показателями системы внешнего дыхания (частота дыхания, ЖЕЛ) позволяет оценить физическое состояние занимающихся. Величина ЖЕЛ может меняться в течение дня и зависит от многих причин. К примеру, после обильного приема пищи или питья, а также вследствие переутомления показатели ЖЕЛ понижаются. Как только проходит утомление, показатели ЖЕЛ приходят к норме. Последовательное уменьшение ЖЕЛ свидетельствует об утомлении и является важным показателем.
Частоту дыхания считают положив ладонь на нижнюю часть живота: вдох и выдох считается за одно дыхание. При счете нужно стараться дышать нормально, не изменяя ритма.
Частота дыхания зависит от возраста, уровня тренированности, состояния здоровья, величины выполняемой физической нагрузки. Взрослый человек делает в минуту 14-18 дыханий. У спортсмена частота дыхания в покое 10-16 в минуту. При увеличении физической нагрузки частота дыхания может достичь 60 и более в минуту.

О силе дыхательной мускулатуры можно судить по данным пневмотонометрии и пневмотахонометрии. Пневмотахонометрия позволяем измерить давление, развиваемое в легких при вдохе. Сила вдоха в большинстве случаев - 50-80 мм. ртутного столба. У спортсменов 60-120 мм ртутного столба. Сила выдоха чаще всего составляет 80-120 мм ртутного столба, у спортсменов - достигает 100-240 и более.

При регулярных занятиях физическими упражнениями мощность форсированного вдоха и выдоха может существенно увеличиваться, что обеспечивает лучшую вентиляцию легких во время физических нагрузок.

Общая емкость легкий– 4-6 л – кол-во воздуха, находящегося в легких после макс. вдоха. Состоит из дыха-тельного объема, резервного

объема вдоха и выдоха и остаточного объема. Дыхательный объем– кол-во воздуха, кот. Поступает и удаляется= 400-500 мл. Резервный объем вдоха(1,5-3 л),который можно вдохнуть дополнительно после обычного вдоха. Резервный объем выдоха(1-1,5 л) объем воздуха, который еще можно выдохнуть после обычного выдоха. Остаточный объем(1-1,5 л) – кол-во воздуха, которое остается в легких после макс. выдоха и выходит только при пневмотараксе (прокол легких– спадение легких). ЖЕЛ(жизн-ая емкость легких) – Сумма ДО, РОВД и РОВЫД=3,5-4,5 л ж-3-4л, у спо-ртсменов может достигать 6 л и >. Частота дыхания– 12-20 циклов в мин. МОД (минутный объем дыхания)– это кол-во литров

воздуха за 1 мин. (4-15л, ЧД*ДО. В состав дых-го воздуха входит мертвое пространство– объем 120-150 мл. Образовановоздухоносными путя-ми (полости рта, носа, глотки, гор-тани, трахеи и бронхов), не участ-вующими в газообмене воздухом.МОДУнетренирова нных достигается за счет ЧД, у спортсменов за счет ГД. При мышечной работе дыхание значительно увеличивается – растет глубина дыхания (до 2-3 л) и частота дыхания (до 40-60 вдохов в 1 мин). МОД может увеличиваться до 150-200 л в мин. Кислородный запрос- кол-во кислорода, необходимое для окислит-х процессов, обеспечивающих ту или иную работу. Кислородный долг– кол-во кислорода потребляемое сверх уровня покоя в восстан. периоде физ. нагрузок.МПК- мак. потребление кислорода при аэробных нагрузках.

10.Анатомо-физиологическая характеристика нервно-гормональной регуляции. Строение и механизм действия гормонов. Особенности нервно-гормональной регуляции мышечной работы.

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д. Железы - органы животных и человека, вырабатывающие и выделяющие особые вещества, участвующие в жизненных процессах. Железы делятся на железы внутренней секреции и железы внешней секреции. В свою очередь, железы внутренней секреции делятся на центральные и периферические. К центральным железам относятся:

гипофиз (ведущая железа внутренней секреции); эпифиз; гипоталамус (структура промежуточного мозга). Периферические железы делятся на гипофиззависимые и гипофизнезависимые. К гипофиззависимым относятся: щитовидная железа; корковое вещество надпочечников; половые железы.

К гипофизнезависимым относятся: паращитовидные железы; " поджелудочная железа; тимус (вилочковая железа); мозговое вещество надпочечников.

Кроме того, следует отметить, что половые железы и поджелудочная железа являются смешанными, потому что они имеют и внешнесекреторную, и внутрисекреторную части. В организме человека также имеются и отдельные гормонпродуцирующие клетки, которые находятся в органах желудочно-кишечного тракта или тканях.

Особенности гуморальной регуляции:

  1. не имеет точного адресата – с током биологических жидкостей веществамогут доставляться к любым клеткам организма;
  2. скорость доставки информации небольшая – определяется скоростью токабиологических жидкостей – 0,5-5 м/с;
  3. продолжительность действия.

Нервная физиологическая регуляция для переработки и передачи информации опосредуется через центральную и периферическую нервную систему. Сигналы передаются с помощью нервных импульсов.

Особенности нервной регуляции:

  1. имеет точного адресата – сигналы доставляются к строго определенныморганам и тканям;
  2. большая скорость доставки информации – скорость передачи нервногоимпульса – до 120 м/с;
  3. кратковременность действия.

Для нормальной регуляции функций организма необходимо взаимодействие нервной и гуморальной систем.

Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов.

По химическому строению гормоны можно классифицировать по трем классам:

  1. белково-пептидные гормоны;
  2. производные аминокислот;
  3. стероидные гормоны.

К первому классу относятсягормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной желез и один из гормонов щитовидной железы.

Ко второму классу относятся амины, которые синтезируются в мозговом слое надпочечников и в эпифизе, а также иод-содержащие гормоны щитовидной железы.

Третий класс- это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга:

С21- гормоны коры надпочечников и прогестерон;

С19- мужские половые гормоны - андрогены и тестостерон;

С18 - женские половые гормоны - эстрогены.

Общим для всех стероидов является наличие стеранового ядра.

Механизмы действия гормонов

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени- это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

Биохимические механизмы передачи сигнала от гормона в клетку-мишень.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

  1. узнавание гормона;
  2. преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Механизмы действия гормонов на клетки-мишени.
В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

При мышечной деятельностинаблюдается выделение в кровяное русло многих гормонов. Однако наибольший вклад в функциональную и биохимическую перестройку организма вносят гормоны надпочечников.

Мозговой слой надпочечников вырабатывает два гормона - адреналин и норадреналин, причем значительно преобладает адреналин. Выделение гормонов мозгового слоя в кровь происходит при различных эмоциях, и поэтому адреналин называют гормоном эмоций или гормоном стресса. Отсюда вытекает биологическая роль адреналина -создание оптимальных условий для выполнения мышечной работы большой мощности и продолжительности путем воздействия на физиологические функции и метаболизм.

Попадая с кровью в легкие, катехоламины дублируют действие симпатических импульсов. Они также вызывают повышение частоты дыхания и расширение бронхов, что приводит к увеличению легочной вентиляции и улучшению снабжения организма кислородом.

Под влиянием адреналина значительно повышается частота сердечных сокращений, а также увеличивается их сила, что способствует еше большему возрастанию скорости кровообращения.

Еще одно важное изменение в организме, вызываемое адреналином, -перераспределение крови в сосудистом русле. Под влиянием адреналина расширяются кровеносные сосуды органов, участвующих в обеспечении мышечной деятельности, и одновременно суживаются сосуды органов, не принимающих прямого участия в обеспечении функционирования мышц. В результате такого воздействия значительно улучшается кровоснабжение мышц и внутренних органов, имеющих отношение к выполнению мышечной работы.

В печени под влиянием адреналина ускоряется распад гликогена до глюкозы, которая затем выходит в кровь. В результате возникает эмоциональная гипергликемия, способствующая лучшему обеспечению глюкозой как источником энергии функционирующих органов. У спортсменов гипергликемия может возникать еще до начала мышечной работы, в предстартовом состоянии.

В жировой ткани катехоламины активируют фермент липазу, что приводит к ускорению расщепления жира на глицерин и жирные кислоты. Образовавшиеся продукты распада жира сравнительно легко попадают в печень, скелетные мышцы и миокард. В скелетных мышцах и миокарде глицерин и жирные кислоты используются в качестве источника энергии. В печени из глицерина может синтезироваться глюкоза, а жирные кислоты превращаются в кетоновые тела. Более подробно эти превращения будут описаны ниже.

Еще одной, причем очень важной, мишенью катехоламинов являются скелетные мышцы. Под действием адреналина в мышцах усиливается распад гликогена, но свободная глюкоза не образуется. В зависимости от характера работы гликоген превращается либо в молочную кислоту, либо в углекислый газ и воду. В любом случае за счет ускоренного расщепления гликогена улучшается энергообеспечение мышечной работы.

Корковый слой надпочечников продуцирует гормоны стероидной природы под общим названием кортикостероиды. По биологическому действию кортикостероиды делятся на глюкокортикоиды и минералокортикоиды. Для регуляции метаболизма во время выполнения физических нагрузок большее значение имеют глюкокортикоиды, главными из которых являются кортизол, кортизон и кортикостерон. Глюкокортикоиды угнетают гексокиназу - фермент, катализирующий переход глюкозы в глюкозо-6-фосфат. С этой реакции в организме начинаются все превращения глюкозы. Поэтому глюкокортикоиды тормозят любое использование глюкозы клетками организма, что приводит к накоплению ее в крови. Можно предположить, что исключением из этого правила является мозг, в который глюкокортикоиды, по-видимому, не попадают из-за наличия гематоэнцефалического барьера. Мозг оказывается в более выгодном положении по сравнению с другими органами, так как подобный механизм регуляции позволяет использовать глюкозу крови преимущественно для питания нервных клеток и дольше поддерживать в крови достаточный уровень глюкозы. Это имеет для мозга исключительно важное значение, поскольку нервные клетки в качестве источника энергии потребляют в основном глюкозу.

Глюкокортикоиды тормозят анаболические процессы, в первую очередь синтез белков. На первый взгляд для организма такой механизм действия должен быть неблагоприятным, так как белки выполняют многие жизненно важные функции. Однако если учесть, что синтез белков - это энергоемкий процесс, потребляющий значительное количество АТФ и, следовательно, являющийся конкурентом мышечного сокращения и расслабления в использовании АТФ, то становится ясно, что торможение синтеза белков во время выполнения физических нагрузок позволяет улучшить энергообеспечение мышечной деятельности.

Еще один механизм действия глюкокортикоидов заключается в стимулировании ими глюконеогенеза - синтеза глюкозы из неуглеводов. Во время мышечной работы глюконеогенез протекает в печени. Обычно глюкоза синтезируется из аминокислот, глицерина и молочной кислоты. С помощью этого процесса удается поддерживать в крови необходимую концентрацию глюкозы, что очень важно для питания мозга.

Эндокринная система Железы внутренней секреции, или эндокринные железы, вырабатывают особые биологические вещества — гормоны. Термин «гормон» происходит от греческого «hormo» — побуждаю, возбуждаю. Гормон-продукт внутр. Секреции, кот. вырабатывается секреторными клетками. Их делят:1.производные аминокислот(щит. Железа, мозговой слой надпочечников) 2.пептидные гормоны (гипофиз, поджелудочная) 3. Стероидные гормоны(кортикостероиды, половые гормоны) Механизм действия гормонов:они действуют на клетки-мишени, кот. Имеют специф. Рецепторы. Они позволяют считывать информацию. Образ.

Гормонрецепторный комплекс (может образовываться на мембране клетки, в цитоплазме или ядре клетки). Гормоны обеспечивают гуморальную (через кровь, лимфу, межтканевую жидкость) регуляцию физиологических процессов в организме, попадая во все органы и ткани. Часть гормонов продуцируется только в определенные периоды, большинство же — на протяжении всей жизни человека. Они могут тормозить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, деятельность внутренних органов. К железам внутренней секреции относят: щитовидную, околощитовидные, зобную, надпочечники, поджелудочную, гипофиз, половые железы и ряд других.

Некоторые из перечисленных желез вырабатывают кроме гормонов еще секреторные вещества (например, поджелудочная железа участвует в процессе пищеварения, выделяя секреты в двенадцатиперстную кишку; продуктом внешней секреции мужских половых желез — яичек являются сперматозоиды и т.д.). Такие железы называют железами смешанной секреции. Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значительные изменения в состоянии организма, в частности в осуществлении обмена веществ и энергии. Они обладают дистанционным действием, характеризуются специфичностью, которая выражается в двух формах: одни гормоны (например, половые) влияют только на функцию некоторых органов и тканей, другие управляют лишь определенными изменениями в цепи обменных процессов и в активности регулирующих эти процессы ферментов. Гормоны сравнительно быстро разрушаются и для поддержания их определенного количества в крови необходимо, чтобы они неустанно выделялись соответствующей железой. Практически все расстройства деятельности желез внутренней секреции вызывают понижение общей работоспособности человека. Функция эндокринных желез регулируется центральной нервной системой, нервное и гуморальное воздействие на различные органы, ткани и их функции представляют собой проявление единой системы нейрогуморальной регуляции функций организма.

Нервы пронизывают все тело и образуют разветвленную информационную систему. Нервная система обеспечивает четкое взаимодействие органов тела. Сигналы или импульсы принимает и передает мозг. И как мы уже знаем, мозг - это очень сложный орган, способный обрабатывать огромный объем информации. Нервная система состоит из отдельных клеток, называемых нейронами. Каждый нейрон имеет три главных элемента: тело клетки, дедриот и аксон. Именно они, собираясь в пучки, образуют периферические нервы, которые являются транспортными каналами не только для нервного импульса, но и для переноса различных питательных веществ к органам и тканям организма человека и животных. Для всех нейронов характерны высокий уровень обмена веществ, особенно синтеза белков и РНК. Интенсивный белковый синтез необходим для обновления структурных и метаболических белков цитоплазмы нейронов и его отростков. Нейроны концентрируются в нервные узлы, которые называются ганглии. Они связаны нервными волокнами между собой, а также с рецепторами и исполнительными органами (мышцы, железы). В нашем теле роль коммуникационной системы выполняет нервная система, в которую входят мозг и нервы, расположенные по всему телу. Следует обратить внимание, что диаметр нервов в разных частях тела сильно различается. Нейрон имеет множество синапсов, через которые он получает возбуждение и тормозные воздействия от других нейронов. Благодаря этому нейрон может получать в больших количествах информацию. Наряду с нервной регуляцией функций в организме человека существует гормональная регуляция с помощью биологически активных веществ - гормонов. Нервная и гормональная регуляция взаимосвязаны. В организме человека они влияют на такие процессы, как: -обмен веществ и энергии; -рост, развитие; -размножение; -адаптация.

Гормоны - это биологически активные вещества, вырабатываемые специальными железами внутренней секреции, поступающие в кровь и изменяющие функции органов-мишеней. Гормоны обладают следующими свойствами:

образуются специальными клетками эндокринных желез;

обладают высокой биологической активностью;

поступают в кровь;

действуют на расстоянии от места образования - дистантно;

большинство из них не обладает видовой специфичностью;

быстро разрушаются.

Железы - органы животных и человека, вырабатывающие и выделяющие особые вещества, участвующие в жизненных процессах. Железы делятся на железы внутренней секреции и железы внешней секреции. В свою очередь, железы внутренней секреции делятся на центральные и периферические. К центральным железам относятся:

гипофиз (ведущая железа внутренней секреции);

эпифиз;

гипоталамус (структура промежуточного мозга). Периферические железы делятся на гипофиззависимые и гипофизнезависимые.

К гипофиззависимым относятся:

щитовидная железа;

корковое вещество надпочечников;

половые железы.

К гипофизнезависимым относятся:

паращитовидные железы; " поджелудочная железа;

тимус (вилочковая железа);

мозговое вещество надпочечников.

Кроме того, следует отметить, что половые железы и поджелудочная железа являются смешанными, потому что они имеют и внешнесекреторную, и внутрисекреторную части. В организме человека также имеются и отдельные гормонпродуцирующие клетки, которые находятся в органах желудочно-кишечного тракта или тканях. Гипофиз - ведущая железа внутренней секреции. Он находится на основании мозга и имеет три доли:

переднюю - аденогипофиз;

промежуточную долю;

заднюю - нейрогипофиз.

Гипофиз связан с гипоталамусом и составляет с ним вместе единую гипоталамо-гипофизарную систему. В передней доле вырабатываются гормон роста и группа тройных гормонов, которые оказывают влияние на щитовидную железу, половые железы и надпочечники. Недостаток гормона роста приводит к карликовости. Избыток - к гигантизму. Гормон пролактин оказывает влияние на выработку молока в молочных железах. Средняя доля вырабатывает гормон, который влияет на пигментообразующую функцию кожи. В нейрогипофизе, то есть в задней доле образуются два гормона, которые влияют на функции почек и матки. Они реализуют свое действие через гипоталамус. Гормон задней доли гипофиза (антидиуретический) регулирует водно-солевой обмен в организме.

Эпифиз - его внутрисекреторная функция связана с регуляцией половых функций организма.

Разрушение эпифиза приводит к преждевременному половому созреванию. Функция эпифиза связана с регуляцией биологических ритмов в организме. Гипоталамус - особый отдел промежуточного мозга. Гипоталамус и гипофиз тесно связаны между собой в своей деятельности и образуют единую систему, которая так и называется гипоталамо-гипофизарная. Контроль гипоталамуса над внутренними органами возможен только потому, что он регулирует функции гипофиза. А гипофиз - это главная железа внутренней секреции. В работу гипоталамо-гипофизарной системы заложен принцип обратной связи. Если какая-нибудь железа внутренней секреции будет выделять много или мало гормонов, гипоталамус улавливает отклонение в их работе через кровь. А затем через гипофиз регулирует, восстанавливает нормальную работу железы. Щитовидная железа регулирует различные виды обмена веществ, а также влияет на энергетический обмен. Особенность щитовидной железы - активное извлечение йода из плазмы крови. Железа продуцирует йодсо-держащие гормоны:

тироксин (Т4);

трийодтиронин (ТЗ).

А также - тирокальцитонин, который имеет отношение к регуляции уровня кальция в крови. Кальцитонин, или тирокальцитонин, состоит из 32 аминокислотных остатков, продуцируется в щитовидной железе, а также в паращитовидной железе и в клетках АПУД-системы (система клеток, в которых продуцируются вещества, подобные гормонам). Физиологическое значение кальцитонина в том, что он не позволяет повышаться уровню кальция в крови выше 2,55 ммоль/л. Механизм действия этого гормона заключается в том, что в костях он угнетает активность остеобластов, а в почках подавляет реабсорбцию кальция и таким образом является антагонистом парагормона. Он препятствует чрезмерному увеличению уровня кальция в крови. Парагормон продуцируется в паращитовидных железах. Он состоит из 84 аминокислотных остатков. Гормон действует на клетки-мишени, расположенные в костях, кишечнике и почках, в результате чего уровень кальция в крови не падает ниже 2,25 ммоль/л.

Надпочечники.

Гормоны корковой части надпочечников поддерживают на высоком уровне работоспособность мышечной ткани. Также они способствуют быстрому восстановлению сил после утомительной физической работы и регулируют водно-солевой обмен в организме. Препараты коры надпочечников (кортизон) применяют при лечении некоторых заболеваний обмена веществ. Удаление коры надпочечников приводит к летальному исходу. Каждый надпочечник состоит из коркового и мозгового вещества. Образование гормонов коры надпочечников находится под влиянием гипофиза. Кортикоидные гормоны влияют на:

углеводный обмен;

обмен минеральных веществ;

клеточный и гуморальный иммунитет.

Изменение концентрации кортикоидов особенно отчетливо проявляется при действии стрессоров. Так как эти гормоны повышают резистентность организма к действию стрессоров, их называют гормонами адаптации.

Кроме того, мозговая часть надпочечников выделяют адреналин. Гормоны норадреналин и адреналин:

влияют на сердечно-сосудистую систему;

расширяют бронхи;

ускоряют распад гликогена в печени;

регулируют работу мускулатуры.

Половые железы через гормоны прогестерон и адро-стерон регулируют формирование тела, обмен веществ и половое поведение человека. Это влияние особенно наглядно проявляется при кастрации (удаление половых желез) или введении в организм половых гормонов. Половые железы являются смешанными. Они вырабатывают несколько гормонов и половых клеток. Образование половых гормонов происходит в мужских (яички) или женских (яичники) половых железах, или гонадах. Половые гормоны влияют на развитие и созревание половых клеток, а также на развитие вторичных половых признаков у мужчин и женщин, половое поведение. У женщин концентрация половых гормонов непостоянна (половые циклы). Парашитовидные железы являются гипофизнезави-симыми, и их всего четыре. Гормон паращитовидной железы способствует переходу кальция из костной ткани в кровь. Полное удаление паращитовидных желез может привести к гибели организма. Не забывайте, что в возрасте 30-35 лет возникает необходимость организма под воздействием гормона паращитовидной железы перекачивать кальций из костей в кровь. И тогда кости становятся хрупкими. Кроме того, из-за снижения функции щитовидной и паращитовидной желез кальций не может "попасть туда, где был взят", и, следовательно, начинает откладываться в суставах. Появляются боль в суставах, плечах, головокружения, звон в ушах, смещение дисков, слоятся ногти, у беременных болят ноги, особенно пятки. К 70 годам человек может потерять до 30% своего запаса кальция. К этому времени добавится еще не одна проблема - запор, бессонница и так далее. Поджелудочная железа. Гормоны поджелудочной железы влияют на углеводный обмен. Причем инсулин - это единственный гормон, понижающий уровень глюкозы в крови за счет увеличения способности клеточных мембран пропускать глюкозу внутрь клетки.

Инсулин - гормон, регулирующий уровень сахара в крови. Недостаточность инсулина приводит к развитию сахарного диабета - болезни, которой страдают ежегодно около 70 млн людей. Инсулин состоит из 51 аминокислотного остатка, объединенных в две субъединицы (А и В), которые связаны между собой двумя сульфидными мостиками. Молекула инсулина содержит в своем составе цинк. Инсулиновые рецепторы находятся на поверхностной мембране клеток-мишеней. При взаимодействии инсулина с рецептором образуется комплекс "гормон + рецептор". Он погружается в цитоплазму, где под влиянием лизосомальных ферментов расщепляется. После этого свободный рецептор вновь возвращается на поверхность клетки, а инсулин оказывает свой эффект.

Наши рекомендации