Изменения, происходящие в крупах, бобовых и макаронных изделиях
СТРУКТУРНЫЕ ОСОБЕННОСТИ ПРОДУКТОВ.
ОСНОВНОЙ ХИМИЧЕСКИЙ СОСТАВ.
Крупа. Крупу классифицируют по виду зерна, из которого она выработана. Зерно злаковых культур состоит из плодовых и семенных оболочек, эндосперма и зародыша. Клетки, составляющие анатомические части зерна, по своей структуре и анатомическому составу различны. Оболочки представляют собой одревесневшие клетки, состоящие из клетчатки, гемицеллюлоз, пентозанов, лигнина, неусвояемых организмом человека.
Основная часть зерна — эндосперм, который включает толстостенные алейроновые клетки, заполненные алейроновыми зернами, и тонкостенные клетки с находящимися в них крахмальными зернами и белковыми веществами. Алейроновый слой у ячменя, например, многорядный (2 ... 4 ряда), сохраняется при производстве крупы и во многом определяет кулинарные свойства этой крупы при водно-тепловой обработке.
Белковые вещества и крахмальные зерна находятся в клетках эндосперма в определенном морфологическом соотношении. Белковые вещества представляют собой как бы матрицу, в которую включены крупные и мелкие крахмальные зерна, размеры и форма которых характерны для каждой культуры.
В процессе производства крупы плодовые и семенные оболочки удаляют почти полностью, алейроновый слой — частично, зародыш — в значительной степени. Морфологические особенности крупы во многом определяют ее кулинарные свойства: водопоглотительную способность, набухаемость, длительность варки и развариваемость. Так, присутствие остаточных участков оболочек зерна и алейронового слоя задерживает продвижение влаги внутрь зерен крупы, а участки, близкие к зародышу, увлажняются быстрее.
Крупы, полученные из зерен злаковых культур, состоят в основном из эндосперма. На периферии эндосперма у некоторых круп (пшено, рис, перловая) сохраняется часть алейронового слоя, семенных оболочек и зародыша.
По своему химическому составу крупы относятся к крахмалистым продуктам. В состав крупы в разных соотношениях входят: вода — 12... 15 %, белки — 8... 15, жиры — 1,0...7,0, углеводы — 60...86, минеральные вещества — 0,6...3,0 %. Белки в крупах представлены в основном глобулинами, глютелинами и проламинами, альбуминов очень мало.
Для белков круп характерно пониженное содержание некоторых незаменимых аминокислот, особенно лизина и треонина. Белок гречневой крупы отличается уникально сбалансированным набором аминокислот. Высокое содержание цистина и цистеина способствует выведению из организма радионуклидов. Белок пшена богат лейцином, треонином, метионином.
Углеводы крупы не только служат основным энергетическим материалом, но и обусловливают кулинарные свойства крупы и ее усвояемость. Состав углеводов крупы характеризует степень отделения анатомических частей зерновки, а также в той или иной степени свидетельствует о качестве крупы. Например, крупа из сырья с повышенным содержанием недозрелых или проросших зерновых содержит больше моносахаридов; в плохо шлифованной крупе повышено содержание целлюлозы, гемицеллюлозы, а также минеральных веществ, которые концентрируются в оболочках и алейроновом слое.
Липидный состав крупы характеризуется значительным содержанием ненасыщенных жирных кислот. Входящий в состав липидов пшена милиацин обладает лекарственными свойствами, стимулирует рост молодого организма.
Из витаминов в крупах содержатся тиамин (ВО, рибофлавин (В2) и никотиновая кислота PP. В гречневой крупе обнаружен рутин благодаря наличию в ней зародыша.
Минеральные вещества крупы характеризуются высоким содержанием фосфора и сравнительно малым количеством кальция (их соотношение достигает 5:1 при оптимальном 2:1). Кроме того, значительная часть фосфора входит в состав фитина, затрудняющего усвоение кальция. Многие крупы представляют собой богатый источник калия, магния, железа и микроэлементов. По массовой доле зольных элементов более ценной считается гречневая крупа.
Современный метод ионоэксклюзивной хроматографии позволил определить в крупяных экстрактах достаточно широкий спектр органических кислот и Сахаров. Из монокарбоновых кислот обнаружены муравьиная, масляная, валериановая. Из оксикислот — молочная, лимонная, яблочная. В экстрактах овсяной и перловой круп обнаружена щавеловоуксусная кислота, в экстрактах риса, пшена, гречневой ядрицы, овсяной и перловой круп — щавелевая.
Таб.10.1. Сорбционная способность крупяных изделий (%)
(Лаврушина, Филичкина, 2000)
Крупа | Адсорбаты | ||||
Кадмий | Свинец | Медь | Хром | Железо | |
Cd(II) | РЬ(И) | Cu(II) | Сг(П) | Fe(II) | |
Гречневая ядрица | 73,0 | 22,0 | 83,6 | 68,8 | 32,0 |
Кукурузная | 70,0 | 89,7 | 85,2 | 36,0 | 20,0 |
Овсяная | 73,3 | 98,9 | 88,5 | 20,0 | 30,8 |
Перловая | 76,7 | 99,7 | 73,8 | 76,0 | 80,0 |
Пшено шлифованное | 73,3 | 98,6 | 81,9 | 68,0 | 16,9 |
Рис шлифованный | 75,3 | 98,7 | 81,9 | 68,0 | 68,5 |
Из ароматических кислот найдены галловая, гиппуровая и п-оксибензойная — в экстракте гречневой ядрицы; о-кумаровая — в экстрактах рисовой и овсяной крупы; миндальная — в экстрактах гречневой ядрицы и перловой крупы. Количественное содержание сахаров, %: сахароза — 0,2...0,7; глюкоза — 0,3...0,8; фруктоза — 0,01...0,7, арабиноза — 0,3...0,8. Результаты новейших исследований по содержанию органических кислот и Сахаров в составе экстрактов различных круп позволяют прогнозировать возможный механизм сорбции тяжелых металлов природными сорбентами.
Исследования последних лет показали, что крупяные изделия можно рассматривать как сорбенты экологически вредных веществ. В табл. 10.1 показана сорбционная способность крупяных кулинарных изделий. Величина сорбции перловой крупы почти 100 %. Отмечено, что сорбция металлов крупяными изделиями (кашами) происходит преимущественно на целлюлозной матрице, крахмальные фракции не только не сорбируют металлы, но и препятствуют сорбции. В сорбции участвуют и другие водонерастворимые компоненты круп — некоторые белки, гемицеллюлозы.
В настоящее время зерновые культуры и крупы рассматривают как основной источник поступления в организм человека пищевых волокон (ПВ). Роль пищевых волокон в питании многообразна. Она состоит не только в частичном снабжении организма человека энергией, выведении из него метаболитов пищи и загрязняющих веществ, но и в регуляции физиологических и биохимических процессов в органах пищеварения. Наибольшее количество ПВ поступает из продуктов зернового происхождения и в меньшей степени — из овощей и фруктов.
Пищевые волокна представляют собой комплекс биополимеров, включающий полисахариды (целлюлозу, гемицеллюлозу, пектиновые вещества), а также лигнин и связанные с ним белковые вещества.
Содержание пищевых волокон в некоторых продуктах переработки хлебных злаков составляет, г/100 г сухого вещества: белая мука 72%-ная — 3,5; отруби отработанные — 30,6; овсяная крупа — 7,2; рис — 2,7; рожь — 12,7; кукурузная мезга — 25,0; оболочки гречихи — 75,0; гороха — 60,0; сои — 50,0.
Пищевые волокна обладают следующими свойствами:
· способны связывать ионы свинца, кадмия и других тяжелых металлов, нитраты, нитриты, аммиак, радионуклиды стронция, цезия и многие органические вещества, в том числе фенолы, формальдегид;
· способны снижать в организме накопление радиоактивных веществ, т. е. обладают радиопротекторными свойствами;
· способны сорбировать и выводить из организма холевые (желчные) кислоты и тем самым понижать содержание холестерина в крови и замедлять развитие атеросклероза.
Отличительная особенность химического состава круп — присутствие в них слизистых веществ, или камедей. Камеди — полисахариды, близкие по составу к гемицеллюлозам, но способные набухать, образовывать гели и клейкие растворы с высокой вязкостью «слизи». Они содержат большие гибкие молекулы, у которых водородные связи насыщены молекулами воды. В результате набухания при комнатной температуре слизи могут поглощать до 800 % воды, в то время как крахмал при этих условиях — 30...35 %, а белковые вещества — 200...250 %. Слизистые вещества являются одним из структурных элементов клеточных стенок и играют значительную роль в обеспечении межклеточных связей в эндосперме крупы.
Бобовые. Для структуры бобовых характерно наличие семенной оболочки различной толщины. Семенная оболочка состоит из палисадных клеток в виде трубчатых каналов, прижатых друг к другу, с небольшими пустотами между ними. Исследования микроструктуры фасоли на электронном сканирующем микроскопе показали, что ткань семядоли состоит из крупных толстостенных клеток овальной формы, наименьший диаметр клеток 40...50 мкм, наибольший — 90... 100 мкм, заполнены они крахмальными зернами, зернистыми белковыми образованиями и плотной белковой матрицей. Между клетками находятся пустые пространства (межклетники) в виде слегка деформированного треугольника. Поверхность крахмальных зерен негладкая, визуально шероховатая. Крахмальные зерна округлой удлиненной формы, минимальный диаметр 14... 20 мкм, максимальный — 25...30 мкм. Стенки клеток плотные, толщина в пределах 1 мкм. Более толстая и плотная семенная оболочка отмечена у сортов фасоли, требующих длительной варки.
Бобовые отличаются значительным содержанием белка, количество которого достигает в горохе 20...35,7 %, в фасоли — 21...28,2, чечевице — 25,3...34,6, сое — 30...40 %. Белок бобовых состоит в основном из водорастворимых и солерастворимых фракций. Бобовые служат хорошим источником таких незаменимых аминокислот, как лизин, валин, лейцин, фенилаланин. Липидов в бобовых содержится 0,5...2,5 %, преобладают непредельные жирные кислоты (60...80 %).
Основную массу сухого вещества бобовых составляют углеводы: сахара, крахмал, гемицеллюлоза, клетчатка, пектиновые вещества. Содержание крахмала 30...55 %, пектиновых веществ — 3,5...5, гемицеллюлозы — 1,2...8,8, клетчатки — 1,2...7,7 %. Минеральные вещества бобовых представлены макроэлементами (калий, фосфор, кальций, магний) и микроэлементами (цинк, железо). В бобовых содержатся почти все витамины группы В, а также ниацин, токоферол, аскорбиновая кислота.
Характерная особенность химического состава бобовых — присутствие в них антипитательных веществ белковой природы — ингибиторов ферментов желудочного тракта. Ингибиторы образуют с ферментами, расщепляющими белки, устойчивые соединения, лишенные ферментативной активности. Они устойчивы к протеолитическому расщеплению, воздействию высокой температуры, обработке щелочами, солями, кислотами. При употреблении сои пищеварительная система человека значительно угнетается, длительное употребление может привести к увеличению поджелудочной железы, поэтому сою перед употреблением подвергают обработке при высоких температурах. В семенах бобовых отмечена самая высокая активность ингибиторов трипсина: фасоль — 0,5...4,6 мг/г, горох — 0,2...4,5, чина — 8,8, соя — 11,2...38,0. Для сравнения: в картофеле — 1,3...8,6, капусте — 1,8...2,1, свекле — 0,188 мг/г.
Бобовые, как и крупы, могут быть хорошими адсорбатами тяжелых металлов, в частности свинца. Установлено, что количество свинца, связанного клеточными стенками вареной фасоли, может достигать 60...70 % к исходному.
Макаронные изделия. Пищевая ценность макаронных изделий определяется содержанием в них (г на 100 г продукта) белков — 10,4...11,8, жиров — 1,1...2,8, углеводов — 71,8...75,1. Влажность макаронных изделий не должна превышать 13 %. Качество макаронных изделий зависит от вида используемой муки (из твердой, высокостекловидной, мучнистой, мягкой пшеницы), различных обогатителей и пищевых добавок. Влажность теста для производства макаронных изделий 28...35 %.
Крахмал муки в этих условиях характеризуется слабой способностью к набуханию. Он связывает воду адсорбционно, в основном благодаря активности гидрофильных групп, и в микрокапиллярах. Тесто для макарон представляет собой гидратированный белковый студень клейковины, обволакивающий и склеивающий между собой зерна увлажненного крахмала. Дальнейшая технология сушки и прессования при производстве макаронных изделий приводит к частичной денатурации белков и нарушению целостности крахмальных зерен.
ЗАМАЧИВАНИЕ КРУП И БОБОВЫХ
Замачивание и варка относятся к тем процессам, которые способны изменить структуру крупы и бобовых и вызвать размягчение тканей. Структура растительного продукта зависит от состава и строения его клеток и, прежде всего от физического состояния полимеров. При взаимодействии крупы и бобовых с водой они набухают. Набухание — поглощение жидкости, сопровождающееся значительным увеличением объема и массы тела (продукта). Механизм набухания заключается во взаимном растворении высокомолекулярного вещества и дисперсной среды. Скорость диффузии молекул воды намного превосходит скорость диффузии молекул полимера. В результате вода односторонне диффундирует в тело, гидратируя полярные участки составляющих его макромолекул. При этом гибкие молекулы тела отодвигаются друг от друга, связь между ними ослабевает, объем тела увеличивается — оно набухает.
Рис.10.1. Авторадиограмма и кривые локального внутреннего влагосодержания в перловой крупе (поперечный срез зерна):
W — влагосодержание, %;
lотн — относительная длина поперечного среза ядра крупы
Способность крупы и бобовых поглощать воду при замачивании объясняется гидрофильными свойствами содержимого клеток и клеточных стенок: белковых веществ, крахмала, пектиновых веществ, гемицеллюлозы, клетчатки. Для крупы и бобовых характерно ограниченное или предельное набухание, при котором набухшее тело остается в состоянии студня, в отличие от неограниченного, когда после набухания тело полностью переходит в раствор. Ограниченное набухание сопровождается частичным растворением полимеров, входящих в состав крупы и бобовых. Так, в процессе промывания крупы в воду частично переходят белки, крахмал, сахара и другие пищевые вещества. Сухой остаток промывных вод может содержать до 41 % крахмала, до 33 % азотистых веществ, до 13 % сахара. При замачивании фасоли в течение 10 ч извлекается 12 %.азота главным образом за счет небелковых веществ.
Рис. 10.2. Авторадиограммы и кривые локального внутреннего
влагораспределения в рисовой крупе (продольный срез зерна).
Потери витаминов (В1 В2, РР) при замачивании бобовых в мягкой воде больше, чем в жесткой. При промывании крупа поглощает воду и ее первоначальная масса увеличивается в среднем на 15...30 %. Если процесс промывания крупы занимает 10... 15 мин, количество поглощенной влаги составляет, %: пшеном — 38...39, рисом — 29...33, овсяной крупой — 28...34, гречневой — 28...31, перловой — 28...29. В большей степени изменяется первоначальная масса при промывании пшена, в меньшей — перловой крупы. Для насыщения влагой в процессе замачивания при температуре 20 °С перловой крупы требуется 7...8 ч, пшена — 30...40 мин, риса —1ч. Остальные крупы занимают промежуточное положение.
Поглощение влаги и ее продвижение внутрь зерен крупы в процессе замачивания протекает у разных видов крупы неодинаково. На рис. 10.1 и 10.2 представлены авторадиограммы и кривые локального внутреннего влагораспределения в перловой и рисовой крупах в зависимости от длительности замачивания в воде температурой 20 0С. Влага проникает в зерна перловой крупу равномерно по всей поверхности, но распределение ее по всему общему происходит очень медленно, что приводит к значительней локализации влаги в наружных слоях зерна. Так, 30-минутное замачивание вызывает увеличение влагосодержания в наружных участках зерна перловой крупы до 29 %, а в центре только на 2...2,5 %. Распределение влаги в зернах рисовой крупы происходит неравномерно. ^Перепад влажности между центральными участками и периферийными в первые 10 мин увлажнения составляет 4,5...5 %. Через 20 мин эта разница значительно сокращается и составляет менее 1,5 %. Это свидетельствует о быстром перераспределении влаги по всему объему зерна крупы. Наличие в зерне риса участков, влагосодержание которых способно в разной мере изменяться в процессе увлажнения (мучнистая часть эндосперма, участки, близкие к зародышу), приводит к неравномерному характеру процессов, сопровождающих перенос влаги. Изменения внутренних механических напряжений при крайне тонкой клеточной структуре эндосперма и недостаточном количестве межклеточных связующих веществ, роль которых в перловой крупе выполняют слизистые вещества, приводит к скачкообразному поступлению воды (см. рис. 10.2) с образованием микротрещин, способствующих раскалыванию зерна на отдельных участках. Причиной образования трещин при увлажнении риса считают мгновенно возросшее осмотическое давление в сочетании с градиентом концентрации влаги. Влага является основным фактором, вызывающим размягчение зерен крупы. Так, обычное 30-минутное замачивание в воде температурой 20 °С снижает микротвердость зерен рисовой крупы в 3,5 раза, перловой — в 1,5 раза по сравнению с первоначальной.
Рис. 10.3. Изменение объема (1) и массы (2) гороха
различных сортов при замачивании:
3 — Торсдаг III; 4 — Хеле; 5 — Стендский Геро
Объем и масса бобовых, так же как и круп, при замачивании увеличивается в результате поглощения влаги. На рис. 10.3 представлены данные о приращении объема и массы гороха различных сортов при замачивании в воде комнатной температуры. Для бобовых характерно опережающее увеличение массы. Так, 6-часовое замачивание при комнатной температуре увеличивает массу бобовых в среднем, %: гороха — на 90... ПО, фасоли — на 70...98, чечевицы — на 80...91. Вода проникает внутрь семян бобовых через семенную оболочку, толщина которой влияет на интенсивность продвижения влаги.
На рис. 10.4 показано изменение влагосодержания при замачивании двух сортов фасоли: Лиахви и Цители-41 — с различной толщиной семенной оболочки — соответственно 50 и 80 мкм. Наименьшее изменение влагосодержания наблюдается у сорта Цители-41 с более толстой семенной оболочкой, особенно в первые часы замачивания. Сорта фасоли и гороха, проявившие в процессе замачивания меньшую способность к изменению влагосодержания и приращению массы, при тепловой обработке обычно дольше варятся.
Рис. 10.4. Изменение влагосодержания фасоли в зависимости от продолжительности замачивания:
1 — сорт Лиахви;
2 — сорт Цители-41
ВАРКА КРУП И БОБОВЫХ
Варка круп и бобовых сопровождается изменением их физико-химических свойств и приводит, прежде всего, к размягчению структуры зерен крупы и семядолей бобовых, изменению их консистенции и массы. Повышение температуры ускоряет продвижение влаги внутрь зерен крупы и семядолей бобовых, интенсивнее протекает процесс набухания белковых веществ и углеводов клеточных стенок, а также начавшаяся клейстеризация крахмала. Белки в процессе варки денатурируют, а поглощенная им« влага выпрессовывается и поглощается клейстеризующимся крахмалом. Медленное распределение влаги внутри зерен крупы задерживает процессы физико-коллоидной природы, сопровождающие варку, и тем самым удлиняет продолжительность варки отдельных видов круп. Скорость распределения влаги в зернах перловой крупы в 2...3 раза меньше, чем в зернах риса (табл. 10.2).