Диаграмма растяжения малоуглеродистой стали

Определение механических характеристик сталей при растяжении выполняют на специальных разрывных или универсальных машинах различных систем и грузоподъемности в зависимости от типа применяемого образца. Такие машины имеют манометры, дающие возможность фиксировать нагрузки в процессе испытания, а также диаграммные аппараты, позволяющие снимать график зависимости удлинения Δl образца от величины статической нагрузки Р.

Для испытания используют стандартные образцы прямоугольного (рис.3.11а) или круглого поперечного сечений (рис. 3.11б). Круглые цилиндрические образцы бывают длинные и короткие, размеры которых указаны на рис.3.11. Поверхность образцов должна имеет обработку высокого класса.

 
  Диаграмма растяжения малоуглеродистой стали - student2.ru

Для стандартных образцов соблюдаются определенные соотношения между его площадью поперечного сечения F0 , диаметром d и расчетной длиной l0:

Диаграмма растяжения малоуглеродистой стали - student2.ru и Диаграмма растяжения малоуглеродистой стали - student2.ru (3.13)

Для образцов прямоугольного поперечного сечения также должно выполняться второе условие (3.13) между расчетной длиной l0 и площадью поперечного сечения F0.

Диаграмма растяжения малоуглеродистой стали зависимость между напряжениями и деформациями, полученная опытным путем. Можно получить после доведения стандартного образца до разрушения на разрывной машине.

На рис. 3.12а, б показаны такие диаграммы растяжения в системе осей Р~Δļ и перестроенная диаграмма растяжения в осях σ ~ε на основании равенств:

Диаграмма растяжения малоуглеродистой стали - student2.ruи Диаграмма растяжения малоуглеродистой стали - student2.ru

На этой диаграмме следует отметить ряд характерных участков.

Прямолинейный начальный участок диаграммы ОА. На этом участке справедлив закон Гука.

Модуль упругости E -тангенс угла наклона прямой предела пропорциональности к оси ε.

tg α = Диаграмма растяжения малоуглеродистой стали - student2.ru = Е (3.14)

 
  Диаграмма растяжения малоуглеродистой стали - student2.ru

Процесс деформирования образца обратим. Если разгрузить образец, то разгрузка пойдет по прямой АО.

Предел пропорциональности – максимальное напряжение, при котором справедлив закон Гука.

Предел пропорциональности находят из отношения нагрузки Рпц к первоначальной площади сечения образца F0, т.е.

Диаграмма растяжения малоуглеродистой стали - student2.ru (3.15)

Значение предела пропорциональности для малоуглеродистой стали σпц≈ 200÷210 МПа.

Рядом с точкой А находится точка В. В пределах участка АВ сталь ведет себя как не линейно упругий материал. Здесь нарушается пропорциональная зависимость между напряжениями и деформациями. Однако процессы нагружение - разгрузка – обратимы. Напряжение σу называется пределом упругости, и определить его можно так:

Диаграмма растяжения малоуглеродистой стали - student2.ru (3.16)

Предел упругости – это максимальное напряжение, при котором не обнаруживается признаков остаточной деформации.

Точки А и В находятся рядом, поэтому на практике считается, что предел упругости σу и предел пропорциональности σпц совпадают. Для предела упругости вводится понятие условного предела упругости (3.3). Согласно стандарту условный предел упругости равен значению напряжений σ при допуске на пластическую деформацию равную 0,05 %.

Диаграмма растяжения малоуглеродистой стали - student2.ru Далее следует отметить почти горизонтальный участок диаграммы ВС, который называется площадкой текучести. На полированной поверхности образца в этот момент испытания наблюдаются линии скольжения Людерса - Чернова, направленные под углом 45о и показанные на рис. 3.13. Линии скольжения впервые упоминаются в 1859 году немецким металлургом Людерсом. А потом независимо от него в 1884 году они были обнаружены русским металлургом Черновым, предложившим использовать их при экспериментальных исследованиях напряженного состояния в сложных элементах конструкций.

Эти линии возникают вследствие сдвигов за счет действия наибольших касательных напряжений τmax

Предел текучести – это напряжение, при котором происходит рост деформаций без увеличения нагрузки. Это напряжение вычисляется так:

Диаграмма растяжения малоуглеродистой стали - student2.ru (3.17)

Значение предела текучести для малоуглеродистой стали σт ≈240 МПа.

Конструкционные стали, как правило, не имеют площадки текучести. Поэтому для них вводится понятие об условном пределе текучести. За условный предел текучести (3.17) принимается такое значение напряжения, при котором остаточная деформация составляет 0,2% и обозначается через σ0,2.

После площадки текучести происходит дальнейший рост деформаций образца Δl, но при увеличении нагрузки Р, что отображено криволинейным участком СD. Если на этом участке образец нагрузить до некоторой точки К, а затем снять нагрузку, то последняя будет происходить по линии КК″, которая параллельна прямой начального участка ОА диаграммы. Полная деформация ε состоит из упругой εу и пластической, или остаточной εост. Материал в точке К будет находится в упруго пластическом состоянии. Если теперь из точки произвести повторное нагружение, то это будет происходить по кривой К″К, образуя петлю гистерезиса, заштрихованную на рис. 3.12. Площадь этой петли характеризует часть энергии, которая рассеивается за счет происходящих необратимых процессов (нагревание, изменение магнитных свойств и т.п.). Как видно при повторном нагружении повышается предел пропорциональности.

Наклеп – это повышение предела пропорциональности при нагружении образца выше площадки текучести.

Поэтому участок СD диаграммы растяжения называется участком упрочнения. При дальнейшем загружении после точки К деформирование образца будет происходить точно также как при отсутствии разгрузки, т.е. по той же кривой СD. В точке D нагрузка Р достигает наибольшего значения Рпч .

Временным сопротивлением или пределом прочности называется напряжение, соответствующее наибольшему значению нагрузки за весь процесс нагружения, который определяется по формуле:

Диаграмма растяжения малоуглеродистой стали - student2.ru (3.18)

Предел прочности для малоуглеродистой стали составляет σпч ≈ 400 МПа. При этом разрушение образца еще не происходит. В наиболее слабом его месте по длине образца начинает появляться и в дальнейшем развиваться местное сужение – шейка (рис.3.14а). В средней части сечения образца материал становится хрупким и за счет действия максимальных нормальных напряжений σmax появляется трещина. Ближе к его поверхности в материале сохраняются пластические свойства. Пластичный материал плохо сопротивляется сдвиговым воздействиям, обусловленными максимальными касательными напряжениями τmax, которые действуют на площадке под углом 450 к оси стержня. За счет развития шейки резко уменьшается площадь поперечного сечения образца. Сопротивление его растягивающей силе уменьшается, деформации растут при снижении нагрузки на участке Dm и при значении нагрузки Рразр происходит разрыв образца. Характер разрушения его показан на рис. 3.14 б.

Характеристики прочности материала - σпц, σу, σт, σпч .

Определяют по диаграмме растяжения σ~ε.

После обмера разорванного образца вычисляют характеристики пластичности. К ним относятся относительное остаточное удлинение и относительное остаточное сужение.

Относительное остаточное удлинение (3.15) величина, определяемая по формуле

Диаграмма растяжения малоуглеродистой стали - student2.ru (3.19):

(для стали Ст.3 δ≈ 21 – 24 %).

Относительное остаточное сужение (3.16) величина, определяемая по формуле:

Диаграмма растяжения малоуглеродистой стали - student2.ru , (3.20)

Fp – площадь сечения образца после испытания в наиболее узком месте шейки. Для стали Ст.3 значение ψ ≈ 62 – 70 %).

Характеристики пластичности материала - относительное остаточное удлинение и относительное остаточное сужение.


Наши рекомендации