Веществ и принципы их нормирования в кормах
И ПРОДУКТАХ ЖИВОТНОВОДСТВА
Для предотвращения отравления сельскохозяйственных и диких животных, в том числе рыб, птиц, пчел, токсическими веществами, применяемыми для обработки растений, почвы, водоемов и животных, а также с целью профилактики загрязнения продуктов питания животного происхождения их остатками устанавливани pel плмопты их безопасного использования и максимально до-iivi'iiiMi.if у|ювни (МДУ) содержания в кормах и продуктах питании
МДУ и кормах — предельно допустимое количество химическом» iичпостна в кормах для сельскохозяйственных животных, вы-рнжсимое и мг/кг массы корма, при котором вещество не оказываем три нагельного влияния на организм и не может содержаться в продуктах питания, полученных от животного, в количествах шише признанных допустимыми.
МДУ, выраженный в мг/кг массы корма, соответствует поня-i то р.р.щ — parts per million (частей на миллион), принятому за
р\>(Н'ЖОМ.
МДУ в продуктах питания — максимально допустимый уровень i одержания биологически активного вещества в растительных и «минутных продуктах, выраженный в тех же единицах, что и величина в кормах.
Допустимые уровни содержания токсических веществ в питье-iioii воде, воде рыбохозяйственных водоемов, а также в воздухе рабочей зоны определяются показателями ПДК, выраженными в mi/л для воды и в мг/м3 для воздуха. Расшифровывают эти показа-кмш как предельно допустимые концентрации токсических веществ в объектах исследования.
МДУ химических веществ для продуктов питания устанавливают органы здравоохранения на основании комплекса показателей:
исследований хронической токсичности химического соединения в 10—12-месячных опытах не менее чем на двух видах лабораторных животных, из которых один не является грызуном;
кумулятивных свойств химического соединения;
персистентности вещества во внешней среде;
способности выделяться с молоком и оказывать отрицательное действие на потомство, а также других показателей.
На основании исследования хронической токсичности для животных устанавливают минимальную действующую дозу (мин. ДД) или максимальную недействующую (безвредную) дозу (макс. НД) для животных. Затем с помощью коэффициента запаса, который колеблется в пределах от 30 до 100 в зависимости от свойств химического соединения, выводят мин. ДД для человека. Для этого величину мин. ДД для животных делят на коэффициент запаса. Например, величина мин. ДД токсического вещества, установленная экспериментально, составила 5 мг/кг массы животного. Коэффициент запаса для данного соединения равен 50. Тогда величина мин.ДД этого вещества для человека составит 5 : 50 = 0,1 мг/кг массы. На основании полученного показателя рассчитывают суточную безопасную дозу. Для этого величину мин. ДД (в данном случае 0,1 мг/кг) умножают на среднюю массу человека, которую принято считать равной 50 кг (с учетом массы детей). Таким образом, суточная безопасная доза химического ве щества в нашем примере составит 0,1 мг/кг • 50 кг = 5 мг. На основании этого показателя вычисляют величину МДУ токсического вещества для продуктов питания различных видов.
Несколько иначе устанавливают величину толерантности (МДУ) токсических веществ в продуктах питания за рубежом. В основу расчетов также положены хронические опыты на лабораторных животных. Исследуемое вещество не менее чем в 3 дозах дают с кормом в течение 3 мес или даже 2 лет. На основании исследований устанавливают максимально недействующую, или подпороговую, дозу, выраженную в мг/кг корма, а не в мг/кг живой массы животного, как это принято в нашей стране. Этот показатель переводят с помощью коэффициента пересчета в мг/кг массы животного. Для белых крыс коэффициент пересчета равен 12,5. Допустим, что в хронических опытах на белых крысах максимально недействующая доза установлена равной 10 мг/кг корма. В пересчете на массу животного эта величина будет равна 0,8 мг/кг (10 : 12,5). По этой величине определяют безопасный уровень содержания токсического вещества для определенного продукта питания, входящего в состав рациона человека — Pd.
Этот показатель вычисляют по формуле
Pd =
Х50 Sa '
где X— максимально недействующая доза (подпороговая) для животных, выраженная в мг/кг массы; 50 —средняя масса человека, кг; S— фактор безопасности, который обычно принимают равным 100. Эту цифру выводят из следующих соображений. Максимально возможные колебания чувствительности отдельных индивидуумов в пределах одного вида не превышают величины, равной 10. В этих же пределах колеблется чувствительность различных видов животных в пределах одного класса. Произведение этих двух величин составляет фактор безопасности. При определении величины Pd для фосфорорганических инсектицидов фактор безопасности иногда берут равным 20, если основным токсикологическим тестом, по которому определяют физиологическое действие токсического вещества, являются начальные признаки угнетения холинэстеразы крови; г— масса продукта, входящего в дневной рацион человека.
Сумма величин Pd— безопасного ежедневного уровня поступления токсических веществ с каждым отдельным пищевым продуктом, входящим в состав дневного рациона, составляет величину ADI — acceptle daily intake — безопасный уровень поступления токсического вещества в организм человека в день.
Величины МДУ, или толерантности, токсических веществ в продуктах питания являются официальными, установленными органами здравоохранения на основании величин мин. ДД токсических веществ, фактического уровня содержания остатков в готовых продуктах питания и других показателей.
МДУ токсических веществ в кормах для сельскохозяйственных
ж 11 потных устанавливает ветеринарная служба на основании экспериментов на животных тех видов, для которых выводят этот по-к;патель. Для экспериментального обоснования МДУ должны |)мть проведены исследования острой токсичности ядохимиката для лабораторных и сельскохозяйственных животных, разработан метод определения его остатков в органах и тканях животных, молоке, мясе, яйцах, кормах, изучены хроническая токсичность вещества, степень его материальной кумуляции при длительном поступлении с кормом, выделении с молоком и яйцами.
По результатам экспериментов определяют максимально нетоксическую (подпороговую) (макс. НД) и минимально токсическую (пороговую) дозу (мин. ДД), а также коэффициент материальной кумуляции по отношению к животным того вида, для которого нормируются остатки. На основании показателей макс. НД и коэффициента материальной кумуляции можно рассчитать величину МДУтоксического вещества в кормах для сельскохозяйственных животных данного вида.
Если при введении с кормом исследуемого вещества в течение 3 мес в дозах, соответствующих макс. НД, официальным методом анализа не удается обнаружить его остатки в органах и тканях животных, молоке, яйцах в количествах выше тех, которые приняты органами здравоохранения в качестве допустимых, величину МДУ данного химического вещества в кормах для дойного и откормочного скота можно принять равной 1/2 макс. НД. Например, в опытах с карбофосом установлена макс. НД 100 мг/кг корма. При введении пестицида коровам в этой дозе официальным методом не установлено его выделение с молоком и накопление в мышечной ткани. Экспериментально обоснованную величину МДУ карбофоса в кормах для откормочного и молочного скота можно принять равной 50 мг/кг корма.
В случае, если при введении с кормом токсического вещества обнаруживают его остатки в органах и тканях животного, молоке, яйцах, МДУ в кормах целесообразно определять, исходя из степени материальной кумуляции вещества в тканях, выделения с молоком и яйцами. Например, при длительном поступлении с кормом гамма-изомера ГХЦГего обнаруживают в мышцах крупного рогатого скота и овец в количествах, в 25 раз меньших по сравнению с его содержанием в корме. Коэффициент материальной кумуляции мышцы — корм в этом случае составляет 0,04. Органами здравоохранения МДУ гамма-иззомера в мясе установлен равным 0,005 мг/кг.
Для нашего примера ПДК гамма-изомера ГХЦГ для откормочного скота равна
^^=0,125 мг/кг корма.
Выделение ГХЦГ с молоком составляет около 10% от уровня его содержания в корме в пересчете на жидкое молоко. Коэффициент выделения корм — молоко равен 0,1- ПДК гамма-изомера ГХЦГ в корме для молочного скота можно вычислить по той же формуле
„„., МДУмолока 0,005 А Л. .
ПДКкорма=——------------------ =—--- =0,05мг/кг.
Л выдел. 0,1
Аналогичные расчеты можно произвести и для яиц. Коэффициент выделения гамма-изомера ГХЦГ с желтком при поступлении с кормом достигает 1. Поэтому ПДК гамма-изомера ГХЦГ в кормах для яйценоской птицы следует рекомендовать равной 0,005 мг/кг — величине МДУ гамма-изомера для яиц.
Таким образом, исходным показателем, по которому устанавливают ПДК токсических веществ в кормах для сельскохозяйственных животных, является их МДУ в мясе, молоке и яйцах.
ПДК токсических веществ в воздухе рабочей зоны и в питьевой воде устанавливают органы здравоохранения на основании комплекса токсикологических исследований, в воде рыбохозяйствен-ных водоемов — соответствующие органы Минрыбпрома и Мин-сельхоза России. Однако до настоящего времени нет единых методических подходов к нормированию токсических веществ в воде рыбохозяйственных водоемов.
Ряд авторов (Н. И. Лесликов, 1960, и др.) предлагают в качестве тест-организмов при экспериментальном обосновании ПДК токсических веществ в воде рыбохозяйственных водоемов использовать дафнии и другие низшие гидробионты, которые служат пищей для рыбы. Такой выбор едва ли будет удачным. ПДК токсических веществ устанавливают для рыбы, поэтому правильным было бы и в качестве тест-объекта использовать рыбу.
Схемой проведения опытов должно быть предусмотрено, так же как и в опытах на теплокровных животных, определение в острых и хронических опытах максимально недействующей (нетоксичной), минимально токсичной (пороговой) и смертельной концентраций, а также СК5о при 96-часовом контакте токсического вещества с рыбой. Базисной концентрацией, по которой устанавливают ПДК, целесообразно принять максимально недействующую концентрацию. При этом обязательно должны быть предусмотрены исследования по разработке методики определения токсического вещества в воде, планктоне, рыбе, изучена динамика i-1'о остатков в воде и рыбе и установлены пути попадания токсиканта в рыбохозяйственный водоем.
ПДК токсических веществ в воде рыбохозяиственных водоемов не может служить критерием оценки санитарного состояния водоема, как это имеет место с ПДК или МДУ токсикантов в кормах или продуктах питания. Следовательно, ПДК химических веществ и воде рыбохозяиственных водоемов является лишь исходным показателем, на основании которого могут быть установлены регламенты применения пестицидов и других веществ в зоне водоемов или проведен контроль за работой очистных сооружений промышленных предприятий, сбрасывающих сточные воды в реки или моря. Поэтому ПДК в воде рыбохозяиственных водоемов не может быть меньше чувствительности аналитического метода определения остатков этого вещества в воде.
По показателю ПДК или МДУ химических веществ в кормах и продуктах питания и скорости снижения их остатков в почве, растениях или организме животных устанавливают регламенты (ограничения) по применению веществ на растениях или животных. Основным регламентом на растениях служит «время ожидания» — срок (в днях) от момента последней обработки участков (кормовых культур, лугов, пастбищ) до уборки урожая на корм животным или их выгона на обработанное пастбище. Это время соответствует продолжительности исчезновения остатков пестицида до уровня, равного ПДК, установленной для кормов, в днях с момента последней обработки. Например, ПДК пестицида X в кормах для сельскохозяйственных животных установлена равной 2 мг/кг. Исчезновение остатков этого пестицида на люцерне до 2 мг/кг происходит в течение 25 дней со дня обработки. Следовательно, «время ожидания» пестицида X на люцерне должно составлять 25 дней.
Для химических средств защиты животных устанавливают «сроки убоя», величина которых соответствует времени (в днях) снижения остатков в органотропном органе животного до МДУ химического вещества, установленного органами здравоохранения для мяса.
Особенно жесткие регламенты должны быть установлены в случаях применении пестицидов, антигельминтиков и других ветеринарных препаратов для дойного крупного рогатого скота и яйценоских птиц. В молоке и яйцах, как правило, не допускается или допускается на очень низком уровне содержание остатков токсических веществ. Поэтому для обработки дойных животных и яйценоской птицы следует применять такие препараты, которые очень быстро разрушаются в организме и не выделяются с молоком и яйцами. Если такой возможности нет, преимущество следует отдавать таким препаратам и методам применения, при использовании которых отмечается наиболее низкое выделение. Однако и для использования этих препаратов должны быть установлены жесткие регламенты.
1.5. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТОКСИЧЕСКИХ ВЕЩЕСТВ
В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ, ТКАНЯХ ЖИВОТНЫХ
И ПРОДУКТАХ ЖИВОТНОВОДСТВА
Химико-токсикологический анализ в ветеринарной токсикологии имеет решающее значение. При установлении диагноза на отравление, изучении миграции токсических веществ в объектах окружающей среды и организме животных, проведении ветеринарно-санитарной оценки кормов и продуктов питания используют, как правило, только химико-аналитические методы исследования. Особенно их значение возросло за последние годы, когда стали уделять особое внимание охране окружающей среды, в системе которой большое место занимает мониторинг — накопление фактических данных по уровню загрязнения объектов окружающей среды токсическими веществами различного происхождения.
По данным Гунтера (1977), чувствительность аналитических методов определения пестицидов за 25 лет (1941 — 1965) выросла в десятки тысяч раз. Если в 1941 г. пределы обнаружения большинства токсических веществ составляли 10мг/кг, то в 1965 г.— 0,1 мкг/кг.
В настоящее время для анализа остатков химических веществ в объектах окружающей среды и биологическом материале используют современные физико-химические методы, такие, как тонкослойную и газожидкостную хроматографию, ультрафиолетовую, инфракрасную и атомно-абсорбционную спектрометрию, масс-спектрометрию и хромас-спектрометрию.
Современные методы исследования должны быть по возможности специфичными, т. е. позволяли бы открывать искомое вещество в присутствии других аналогичных соединений, быть достаточно чувствительными и позволяли бы определять миллионные доли вещества в 1 кг субстрата. Особенно это важно для методов, предназначенных для санитарной оценки кормов и продуктов животноводства, а также для изучения динамики остатков пестицидов в воде, растениях и организме животных.
Степень определения химических токсикантов должна составлять не менее 60 % от количества стандартного вещества, внесенного в пробу. Методы должны быть удовлетворительно точными (не менее ± 20 %) и хорошо воспроизводимыми.
Методы определения токсических веществ в патологическом материале, объектах окружающей среды, кормах и продуктах питания животного происхождения включают в себя выделение токсического вещества из пробы. Выделение яда из пробы может быть проведено путем мокрого или сухого озоления, отгонки с водяным паром или же экстракцией одним или несколькими органическими растворителями.
Сухое озоление проводят под действием высокой температуры (до 500 °С) в муфельной печи. Этот метод в основном используют для выделения металлов.
Мокрое озоление применяют значительно чаще и проводят при помощи концентрированных неорганических кислот, чаще всего смеси азотной, серной кислот и окислителей.
Выделение токсических веществ методом отгонки с водяным паром или дистилляции используют для легколетучих химических соединений. Сущность метода заключается в том, что пробу тщательно измельчают до кашицеобразного состояния или же разрушают неорганической кислотой, разбавляют водой, а затем воду перегоняют, нагревая колбу или подавая в нее пар от парообразователя. Токсические вещества переводятся в дистиллят.
Чаще других в ветеринарной практике выделяют токсические вещества путем их экстракции из пробы органическими растворителями. Для этого пробу тщательно измельчают, помещают в колбу, а затем заливают одним или несколькими органическими растворителями. Объем органического растворителя должен быть не менее чем в 2 раза больше массы или объема пробы. Экстракцию токсиканта проводят путем выдерживания пробы с органическим растворителем в течение 20—24 ч, перемешивания на шюттель-ап-парате в течение 1—2 ч или смешивания в течение нескольких ми-пут при большой скорости вращения перемешивающего устройства (ультратораксы, омнимиксары и др.). Последний способ предпочтителен, так как при этом образуется гомогенная масса, в которой создается наиболее тесный контакт органического растворителя с субстратом, а следовательно, наиболее полно извлекаются токсические вещества, содержащиеся в пробе. Для этой цели также используют аппарат Соксклета, в котором токсическое вещество экстрагируется при многократном промывании субстрата кипящим органическим растворителем. Аппарат Соксклета обеспечивает более полное извлечение токсиканта из пробы по сравнению с другими методами.
При любом способе выделения токсического вещества в экстракт переходит значительное количество примесей, мешающих определению: жиры, пигменты, воск, белки, соли и др. Для освобождения экстракта от этих веществ используют различные способы очистки: путем омыления, вымораживания, осаждения, перераспределения из одного органического растворителя в другой с помощью специальных колонок и др. Последние зависят от вида анализируемого соединения и субстрата, в котором он находится.
Для того чтобы повысить чувствительность метода анализа, экстракты концентрируют до небольшого объема, достаточного для проведения исследований данным методом. Обычно конечные объемы экстрактов составляют 0,5—5 мл. Для концентрирования используют специальные аппараты Кудерна—Данича, вакуум-ротационные испарители. Концентрирование также можно проводить в токе воздуха или азота. В практических условиях наиболее приемлемым способом является концентрирование в токе воздуха. Для этого экстракт заливают в фарфоровую выпарительную чашку, ставят ее под шторку вытяжного шкафа и включают тягу. При определении высоколетучих веществ при концентрировании возможны значительные потери яда, поэтому при этой операции необходимо выполнять следующие требования: не концентрировать конечные экстракты при повышенной (выше 40 °С) температуре, не упаривать досуха очищенные экстракты.
Индикацию токсичных веществ проводят следующими основными методами.
Биологические методы.Применяют главным образом для определения некоторых пестицидов и микотоксинов. Они основаны на чувствительности низших животных, растений или тканей к действию токсического вещества. Так, к инсектицидам и акарици-дам наиболее чувствительны различные членистоногие. Чаще других для определения ансектоакарицидов используют комнатных мух, мух-дрозофил, личинок комаров и рачков-дафний. Для определения микотоксинов применяют кожные пробы на кроликах или аквариумных рыбах гуппи.
Некоторые из микотоксинов, в частности трихотецены и другие, продуцируемые грибом Fusarium sporotrihioides, обладают очень сильным дерматоцидным действием, поэтому реакция кожи является специфической по отношению к метаболитам этих видов грибов. Из всех позвоночных животных наиболее чувствительны по отношению к большинству токсических веществ рыбы, поэтому их используют для определения не только микотоксинов, но и многих других токсикантов.
Биологические методы индикации обладают высокой чувствительностью, однако в большинстве своем они неспецифичны и не позволяют установить вид токсического вещества. Однако эти методы широко применяют для общей токсикологической оценки кормов при отравлениях животных на первой стадии лабораторного токсикологического исследования. С помощью этих методов можно установить отравление и исключить заболевания другой этиологии.
Биохимические методы.Основаны на подавлении некоторыми токсическими веществами активности отдельных биохимических систем. В ветеринарном токсикологическом анализе наиболее часто применяют ферментный метод определения фосфороргани-ческих и карбаматных инсектицидов. Он основан на том, что соединения этих групп в условиях in vitro подавляют активность холинэстеразы. Чувствительность метода при определении некоторых ФОС достигает 0,01—0,001 мг/кг. Однако эти методы обладают групповой специфичностью и позволяют установить всю группу в целом, не давая возможности установить вид ФОС.
Кроме этого некоторые ФОС, в частности производные тио- и дитиофосфорных кислот, очень слабо ингибируют активность фермента in vitro и нуждаются в предварительной активации.
Химические методы.Основаны на количественном определении осадка или окрашенного комплекса, образуемого при взаимодействии открываемого вещества с другим химическим соединением. Химические методы анализа, применяемые в ветеринарной токсикологической практике, основаны на осаждении, титрометрии, колориметрии, спектрофотометрии.
Реакция осаждения базируется на образовании нерастворимого в воде осадка при взаимодействии открываемого химического вещества с другим химическими соединением, вводимым в экстракт. По реакции осаждения определяют некоторые алкалоиды, натрия хлорид, ТМТД и другие токсические вещества. Однако методы определения ядовитых веществ этой реакцией имеют низкую чувствительность, недостаточную специфичность и точность, поэтому их применяют ограниченно.
Более широко используют титрометрические методы. Примером может служить определение натрия хлорида при осаждении хлоридов серебра нитратом с последующим титрованием избытка серебра роданидом аммония в присутствии в качестве индикатора железоаммонийных квасцов. Но и титрометрические методы недостаточно чувствительны и утрачивают свое практическое значение в связи с развитием новых, более совершенных способов.
В практике химико-токсикологических исследований находят широкое применение колориметрические методы, основанные на определении интенсивности окраски цветных комплексов, образующихся при взаимодействии открываемого вещества с другим химическим соединением, вводимым в раствор. В последние годы все чаще используют фотоэлектроколориметрические методы, при которых интенсивность окрашивания цветных комплексов определяют с помощью фотоэлектроколориметра. По чувствительности и точности колориметрические методы превосходят основанные на осаждении и титрометрии способы.
Физико-химические методы. Кфизико-химическим методам относят различные методы хроматографии (колоночную, бумажную, тонкослойную, газожидкостную и жидкостную), полярографию, ультрафиолетовую и инфракрасную спектрометрию, атомную абсорбцию, методы нейтронно-активационного анализа.
Из хроматографических методов в практике ветеринарно-ток-сикологического исследования наибольшее применение находят тонкослойная и газожидкостная хроматографии (ТСХ и ГЖХ), разработанные русским ученым М. С. Цветом (1903). Эти методы являются одними из основных в аналитической химии. Преимущество их состоит в том, что они обладают высокой специфичностью и чувствительностью и позволяют за один аналитический iipiii-м определить сразу несколько химических соединений. Можно спожпую смесь химических соединений, содержащихся в ана-пи шруемой пробе, разделить на отдельные вещества, а затем каждое hi них определить каким-либо химическим или физическим методом.
Тонкослойную хроматографию наиболее широко применяют в практических лабораториях. Принцип полуколичественного метода состоит в том, что смесь химических веществ, содержащихся в анализируемой пробе, наносят на пластинку и разделяют в тонком слое инертного порошка (селикагель, окись алюминия и др.) с помощью смеси органических растворителей (подвижный растворитель). Пластинку опрыскивают раствором проявляющего реактива, в результате чего на ней появляются в виде окрашенных пятен исследуемые химические соединения. Идентифицируют открытые вещества по величине Rf — частному от деления расстояния, пройденного искомым веществом отточки нанесения (линия старта) до места дислокации, к расстоянию, пройденному подвижным растворителем. Количество открываемого вещества определяют по интенсивности окраски пятна и его размерам.
В практике ветеринарных химико-токсикологических исследований тонкослойная хромотография используется для определения многих пестицидов, алкалоидов, микотоксинов, органических соединений тяжелых металлов. Метод прост по технике использования, не требует сложного оборудования, обладает достаточно высокой специфичностью и чувствительностью (0,05— 1,0 мкг в пробе).
Газовую хроматографию применяют для одновременного разделения смеси химических веществ, их последующей идентификации и количественного определения. Разделение смеси осуществляют на стеклянных или металлических колонках длиной 1—3 м, заполненных твердым адсорбентом с нанесенной на него жидкой фазой. В качестве последней чаще всего используют высокомолекулярные жидкости с высокой температурой кипения (полиэти-ленгликоли, силиконовые масла и др.). Подвижной фазой служит инертный газ (азот и др.).
Индикацию разделенных химических веществ осуществляют с помощью детектора. В газовых хроматографах, предназначенных для анализа токсических веществ, чаще всего используют детектор электронного захвата (ДЭЗ), термоионный детектор (ТИД), пламенно-фотометрический детектор (ПФД). Абсолютная чувствительность детектирования различных химических соединений достигает 0,01—0,02 нг в пробе, относительная чувствительность — 0,1—0,5 мкг/кг. В практике химико-токсикологического анализа газовую хроматографию применяют для открытия многих пестицидов, органических соединений ртути, полихлорированных би-фенилов и других токсических соединений. Однако возможности газовой хроматографии далеко не исчерпаны. Газовая хроматография, и в частности ГЖХ, имеет некоторые недостатки: не позволяет прямым способом разделить и идентифицировать вещества, не обладающие летучестью и не способные прямым путем переходить в газообразное состояние.
Высокоэффективная жидкостная хроматография (ВЭЖХ) основана на том же принципе, что и газожидкостная, с той лишь разницей, что разделение вещества происходит в двух несмешивающихся жидкостях. Одна из них — обычно высокомолекулярная неполярная жидкость —служит неподвижной фазой, вторая — низкомолекулярная — подвижной. Подвижную фазу под высоким давлением пропускают через неподвижную, в результате чего сложная смесь разделяется на отдельные соединения. С помощью ВЭЖХ можно разделить твердые и жидкие смеси, не превращая их в газообразное состояние, как это бывает при ГЖХ.
Недостаток этого метода — ограниченное число детектирующих систем. Серийные жидкостные хроматографы, выпускаемые отечественными фирмами, оборудованы лишь одним детектором — спектрофотометром.
Спектральные методы. Наибольшее применение в практике анализа токсических веществ получила ультрафиолетовая спектрометрия. Принцип работы ультрафиолетового спектрофотометра основан на поглощении растворами химических веществ лучей в ультрафиолетовом спектре. Этот метод принципиально отличается от фотоэлектроколориметрического тем, что оптическая плотность анализируемых экстрактов измеряется в ультрафиолетовой области спектра.
Инфракрасная спектрометрия основана на поглощении химическим веществом лучей в инфракрасной области спектра. Степень поглощения неодинакова у разных структурных групп химического вещества, поэтому инфракрасная спектрограмма представляет собой конгломерат пиков с большим количеством вершин. Инфракрасную спектрометрию, как правило, не используют для определения микроколичеств химических веществ в биологических субстратах, а применяют главным образом для расшифровки структуры выделенного химического вещества.
Атомно-абсорбционная спектрометрия основана на поглощении отдельными атомами химических элементов световых лучей в определенной области спектра. Поэтому исследуемые химические вещества вначале минерализуются, а затем в состоянии раствора подвергаются воздействию лучами определенной длины, соответствующей поглощающей способности того или иного элемента. По степени поглощения лучей определяют его количественное содержание. Этот метод находит широкое применение главным образом при определении металлов и металлоидов (ртуть, свинец, кадмий, медь, цинк и др.).
Нейтронно-активационный анализ основан на облучении пробы нейтронами, в результате чего возникает наведенная радиация, по степени которой и определяют количественный уровень содержания исследуемого элемента. Однако метод требует сложного оборудования, поэтому малоприемлем в практических условиях.
Критерии оценки методов определения остатков токсических веществ.Методы определения остатков токсических веществ в объектах ветеринарного надзора обычно характеризуют по чувствительности, точности и определяемости.
Чувствительность метода — наименьшее количество химического вещества, открываемое при заданных условиях метода. Она может быть абсолютной и относительной. Абсолютная чувствительность — наименьшее количество вещества, которое можно определить данным методом или реакцией, лежащей в ее основе. Так, с помощью газожидкостной хроматографии можно определить 0,05 нг ТХМ-3. Однако для исследования используют лишь часть аликвоты, предназначенной для анализа, которая соответствует определенной части пробы. Поэтому для полной характеристики метода целесообразно ввести такое понятие, как относительная чувствительность — чувствительность по отношению к одному и тому же объему или массе. Обычно относительную чувствительность принято выражать в мг/кг пробы.
Точность метода. Под точностью метода, как правило, понимают различие между истинной и экспериментально найденной величиной. При этом за истинную величину может быть принято количество вещества, вносимого в пробу из стандартного раствора. Поэтому точность метода может быть охарактеризована как разница между количеством вещества, внесенного в пробу и определенного данным методом аналитического исследования. Точность — это величина стандартного относительного отклонения, установленного по результатам воспроизведения методики при'внесении данного количества вещества в пробу.
Точность метода соответствует величине стандартного относительного отклонения и вычисляется по формуле
_ \ЦХ-Х)2 |
N-1 |
а (стандартное отклонение)=
где N— число измерений; X— примерная величина; X —среднее арифметическое; I — знак суммирования.
Сначала рассчитывают среднее арифметическое X, затем абсолютную величину разности между X и значением отдельного измерения; разность возводят в квадрат и эту величину суммируют. Сумму делят на N— 1. Квадратный корень из полученного результата представляет собой стандартное отклонение а.
Однако точность метода может быть вычислена применительно к определяемости. Поэтому сначала устанавливают определяемость метода, а затем его точность по показателю относительного стандартного отклонения.
Определяе мость метода — средняя величина, показывающая процент открытия вещества в пробе после его внесения из стандартного раствора в количествах, соответствующих пределу определения и максимально возможному уровню содержания.
1.6. ЭМБРИОТОКСИЧЕСКОЕ, ГОНАДОТОКСИЧЕСКОЕ,
ТЕРАТОГЕННОЕ И МУТАГЕННОЕ ДЕЙСТВИЕ
ТОКСИЧЕСКИХ ВЕЩЕСТВ
Отдельные токсические вещества при поступлении в организм животных вместе с кормом или в результате обработок могут отрицательно влиять на репродуктивную функцию животных, вызывая эмбриотоксическое, тератогенное, гонадотоксическое действие. По этой причине токсические вещества, которые могут поступать в организм животных с кормом постоянно или в течение определенного периода, должны подвергаться исследованию на эмбриотоксичность, тератогенность и гонадотоксичность. Также целесообразно исследовать на наличие этих действий некоторые лекарственные препараты и премиксы, если их используют многократно.
Эмбриотоксическое действие. Это способность исследуемого вещества отрицательно действовать на развивающиеся эмбрионы. В медицинской токсикологии эмбриотоксическое действие изучают на самках белых крыс, которым в течение всей беременности вводят внутрь через зонд или дают с кормом препарат. На 17—19-й день беременности, начало которой устанавливают по результатам исследования вагинальных мазков, крыс убивают, подсчитывают число плодовместилищ, желтых тел в яичниках, живых и мертвых плодов. Сравнивая результаты этих исследований в опытной и контрольной группах, устанавливают степень эмбриотоксической активности препарата. Часть беременных крыс из опытных групп оставляют для родов, при этом учитывают продолжительность беременности, число плодов, их массу, длину туловища новорожденных крысят, их развитие (увеличение длины и массы за определенный срок, время открытия глаз, покрытия шерстью, начала самостоятельного передвижения по клетке и поедания корма). Кроме того, учитывают выживаемость крысят, распределение их по полу. При этом отмечают: избирательную эмбриотоксичность — эффект проявляется в дозах, не токсичных для материнского организма; общую эмбриотоксичность — проявляется одновременно с развитием интоксикации организма матери; отсутствие эмбриотоксичности — эффект не отмечается при признаках интоксикации материнского организма (Медведь, 1968).
Каких-либо методических подходов к определению эмбриотоксических свойств препаратов ветеринарного назначения нет.
I la первых этапах, по-видимому, целесообразно в качестве модели использовать также белых крыс, так как опыты на сельскохозяйственных животных затруднительны из-за продолжительных сроков беременности и сравнительно небольшого числа особей в помете (за исключением свиней). В том случае, если будет установлено, что исследуемые соединения обладают общей или избирательной эмбриотоксичностью, ставят опыты на животных, и прежде всего на свиньях. Препараты в зависимости от их целевого назначения и способа применения целесообразно давать с кормом, вводить внутримышечно или наносить накожно.
Тератогенное действие.Это такое действие, при котором нарушается формирование плода в период его эмбрионального развития. Проявляется оно в виде уродств. Тератология как наука получила развитие после случаев с талидомидом — лекарственным препаратом, широко применявшимся беременными женщинами в Западной Европе в качестве снотворного и седативного средства. В результате было зафиксировано рождение детей с врожденными пороками развития.
В медицинской токсикологии тератогенное действие пестицидов определяют на белых крысах. Для этого препарат животным вводят в<