Окислительно-восстановительных реакций

При составлении уравнений ОВР нужно учесть, что число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

В химии электрон обозначается окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru его условный заряд принят за «-1» окислительно-восстановительных реакций - student2.ru Для подбора стехиометрических коэффициентов можно использовать несколько методов. К наиболее распространенным относятся метод электронного баланса и метод электронно-ионных уравнений (метод полуреакций).

Метод электронного баланса является наиболее универсальным методом и применим для любых окислительно-восстановительных процессов, протекающих в любых системах (растворы, расплавы, газы). В основе метода лежит принцип сравнения степеней окисления атомов в исходных веществах и в продуктах реакции с последующим составлением схемы электронного баланса.

Пример 2. Рассмотрим метод электронного баланса для уравнивания ОВ-реакции:

окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

Для расстановки коэффициентов выполняем следующие действия.

1. Определяем элементы, атомы которых изменяют степень окисления:

окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

2. Находим окислитель и восстановитель в данной ОВР, составляем схему перехода электронов от восстановителя к окислителю и пишем отдельно электронные уравнения процессов окисления и восстановления с учетом того, что количество атомов, входящих в соединение, должно сохраняться. Например, в окислительно-восстановительных реакций - student2.ru имеется два атома Cr, следовательно, в уравнении они должны присутствовать:

+6ē

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru -2ē

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

окислитель восстановитель

2Cr+6 + 6ē = 2Cr+3 (а) - восстановление

S-2 - 2ē окислительно-восстановительных реакций - student2.ru = S0 (б) – окисление

3. Уравниваем число электронов в процессе окисления и восстановления (составляем электронный баланс). В приведенной схеме необходимо уравнение (б) умножить на 3, тогда будет принято и отдано по 6 электронов. После умножения уравнения складываются как обычные алгебраические:

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru 2Cr+6 + 6ē = 2Cr+3 1

+ S-2 - 2ē окислительно-восстановительных реакций - student2.ru = S0 3

 
  окислительно-восстановительных реакций - student2.ru

2Cr+6 +3S-2 = 2Cr+3 + 3 S0

4. Полученные коэффициенты называют основными. Они переносятся в молекулярную схему реакции и ставятся перед соответствующими веществами. Так как в молекулах K2Cr2O7 и Cr2(SO4)3 содержится по два атома хрома, двойки перед этими веществами опускаются.

K2Cr2O7 + 3H2S + H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + H2O

5. Окончательно уравниваем число атомов каждого элемента в обеих частях молекулярного уравнения. Продукты реакции (Cr2(SO4)3, K2SO4), имеющие коэффициенты по единице, содержат 4 моль сульфат-ионов (SO42-), которые содержатся в серной кислоте, следовательно, перед ней ставится коэффициент 4. Чтобы количество атомов водорода было одинаково в левой и правой частях уравнения, перед водой ставится коэффициент 7:

K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + 7H2O

Проверка количества остальных атомов показывает, что все коэффициенты подобраны.

Метод электронно-ионных уравнений (метод полуреакций). Этот метод основан на составлении уравнений процессов окисления и восстановления с помощью ионов и молекул, реально существующих в растворе. Степени окисления атомов не используют, а учитывают заряды ионов и характер среды (рН), в которой протекает ОВ-реакция. В качестве частиц среды в водных растворах могут принимать участие следующие частицы: Н+, ОН- и Н2О .

Для написания уравнения в ионно-молекулярной форме следует знать:

1. Сильные кислоты (например, HCl, H2SO4, HNO3) распадаются на ионы H+ и кислотный остаток, например, H2SO4 ®2H+ +SO42-

Слабые кислоты, для которых константа диссоциации Кд<10-3 (например, H2S, HCN), практически не диссоциируют на ионы и записываются в молекулярном виде.

2. Сильные основания (например, LiOH, NaOH, KOH) распадаются на катион металла и гидроксид-ион OH-, например, КОН ®К+ +OH-

Слабые основания, для которых Кд<10-3 (например, NH4OH), практически не диссоциируют на ионы и записываются в молекулярном виде.

3. Соли распадаются на катионы металла и кислотный остаток. Например, KBr ®K+ +Br-1 :

K BrО3 ® K+ + BrО3-1

K2Cr2O7® 2 K+ + Cr2O72-

4. Оксиды (например, MnO2, FeO, Fe2O3, CO2, SO2, NO) не распадаются на ионы.

5. Вода Н2О (Кд=1,8.10-16), пероксид водорода Н2О2д=1.10-25) как слабые электролиты, не распадаются на ионы.

Схема метода ионно-электронных уравнений:

1. Написать уравнение в ионно-молекулярной форме.

2. Определить кислотно-щелочность среды.

3. Определить частицы, изменившие свой заряд или состав, и записать реакции их превращения.

4. Составить материальный баланс для этих превращений, то есть количество атомов каждого из присутствующих элементов в левой и правой частях уравнения должно быть одинаково.

Если исходные вещества содержат большее число атомов кислорода, чем полученные продукты, то в кислой среде каждый атом кислорода можно связать двумя ионами водорода в воду, а в нейтральной и щелочной средах молекулой воды в гидроксид-ионы.

Если исходные вещества не содержат кислорода или содержат меньшее

число атомов кислорода, чем полученные продукты, то недостающее число атомов кислорода можно восполнить в нейтральной и кислой средах за счет молекул воды, а в щелочной – за счет двух ионов ОН-.

5. Уравнять полученные реакции по зарядам с участием электронов.

6. Составить электронный баланс между полуреакциями, учитывая, что количество принятых электронов должно равняться количеству отданных. Далее просуммировать полуреакции: сложить отдельно левые части и отдельно правые части уравнений. Если в суммарном уравнении имеются одинаковые частицы в левой и правой частях уравнения, то их сократить.

7. Полученные коэффициенты перенести в молекулярное уравнение и проверить материальный баланс.

Пример 3. Рассмотрим метод электронно-ионных уравнений для уравнивания ОВ-реакций между KMnO4 и KNO2 в кислой, нейтральной и щелочной средах.

1) вкислойсреде реакция протекает по уравнению

KMnO4 + KNO2 +H2SO4 ®MnSO4 + KNO3 + K2SO4 + H2O

1. Записываем это уравнение в ионно-молекулярной форме. Для этого все сильные электролиты представляем в виде ионов, а слабый электролит H2O оставляем в виде молекул:

K++MnO4- +Na++NO2-+2H+ +SO42- ®Na++NO3-+ Mn2++SO42- +2K++SO42-+H2O

2. В уравнении присутствуют ионы Н+, следовательно, реакция протекает в кислой среде.

3. Определяем частицы, изменившие свой заряд или состав:

MnO4-® Mn2+ и NO2-® NO3-

4. На основании этих превращений составляем материальный баланс с участием частиц среды. Ион MnO4- потерял 4 моль атомов кислорода, которые в кислой среде связываются 8 моль ионами водорода и превращаются в воду. Ион NO2- с участием воды приобрел 1 моль атомов кислорода:

MnO4- + 8H+ ® Mn2+ + 4H2O

NO2- + H2О ®NO3- + 2Н+

5. Полученные полуреакции необходимо уравнять по зарядам. В первом уравнении суммарный заряд слева равен (+7), а справа – (+2), значит, перманганат-ион присоединил 5 электронов и восстановился. Во втором уравнении слева (-1), а справа – (+1), следовательно, ион NO2- потерял 2 электрона и окислился:

MnO4- + 8H++ 5ē® Mn2+ + 4H2O

NO2- + H2О –2ē ®NO3- + 2Н+

6. Для соблюдения электронного баланса первое уравнение необходимо умножить на 2, второе уравнение умножить на 5, после чего просуммировать уравнения:

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru MnO4- + 8H++ 5ē ® Mn2+ + 4H2O 2

+

NO2- + H2О – 2ē ®NO3- + 2Н+ 5

 
  окислительно-восстановительных реакций - student2.ru

2MnO4- + 16H+ +5NO2- + 5H2О ®2Mn2+ + 8H2O + 5NO3- + 10Н+

В левой и правой частях уравнения имеются одинаковые частицы: H+ и H2O. После их сокращения получаем сокращенное ионно-молекулярное уравнение:

2MnO4- + 6H+ +5NO2- + ®2Mn2+ + 3H2O + 5NO3- .

7. Далее переносим коэффициенты в исходное уравнение:

2KMnO4 + 5 KNO2 +3H2SO4 =2MnSO4 + 5 KNO3 + K2SO4 + 3 H2O

и проверяем материальный баланс.

2) в нейтральной среде реакция протекает по уравнению

KMnO4 + KNO2 +H2O ®MnO2 + KNO3 + KOH

1. Записываем это уравнение в ионно-молекулярной форме. Сильные электролиты записываем в виде ионов, а слабый электролит H2O и малорастворимый MnO2 в виде молекул:

K+ + MnO4- + K+ +NO2- +H2O ®MnO2 + K++ NO3- + K+ + OH-

2. В уравнении присутствует Н2О, следовательно, реакция протекает в нейтральной среде.

3. Определяем частицы, изменившие свой заряд и состав:

MnO4- ® MnO2 и NO2- → NO3-

4. На основании этих превращений составляем материальный баланс с участием частиц среды. Ион MnO4- потерял 2 моль атомов кислорода, которые в нейтральной среде связываются 2 моль H2О и образуют 4 моль OН-. Ион NO2- с участием воды приобрел 1 моль атомов кислорода:

MnO4- + 2H2О ® MnО2 + 4OН-

NO2- + H2О ®NO3- + 2 Н+

5. Полученные полуреакции необходимо уравнять по зарядам. В первом уравнении слева суммарный заряд равен (-1), а справа – (-4), значит, перманганат-ион присоединил 3 электрона и восстановился. Во втором уравнении слева суммарный заряд (-1), а справа – (+1), следовательно, ион NO2- потерял 2 электрона и окислился:

MnO4- + 2H2О+ 3ē ® MnО2 + 4OН-

NO2- + H2О – 2ē ®NO3- + 2 Н+

6. Для соблюдения электронного баланса первое уравнение необходимо умножить на 2, второе уравнение умножить на 3, после чего просуммировать уравнения:

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru + MnO4- + 2H2О+ 3ē ® MnО2 + 4OН- 2

NO2- + H2О –2ē ®NO3- + 2 Н+ 3

 
  окислительно-восстановительных реакций - student2.ru

окислительно-восстановительных реакций - student2.ru 2MnO4- + 4H2О +3NO2- + 3 H2О ®2MnO2+8ОH- + 6H++3NO3-

6 H2O +2 OН-

В правой части уравнения имеются 8ОH- и 6H+, которые в сумме образуют 6 моль H2O и 2 моль ионов OН- . В левой части уравнения имеется 7 моль H2О. После сокращения H2О в левой и правой частях уравнения получаем сокращенное ионно-молекулярное уравнение:

2MnO4- +3NO2- + H2О ® 2MnO2+2ОH- +3NO3-

7. Далее переносим коэффициенты в исходное уравнение:

2KMnO4 + 3 KNO2 +H2O =2MnO2 + 3 KNO3 + 2KOH

и проверяем материальный баланс.

3) в щелочнойсреде реакция протекает по уравнению

KMnO4 + KNO2 +KOH ®K2MnO4 + KNO3 + H2O

1. Записываем это уравнение в ионно-молекулярной форме. Для этого все сильные электролиты представляем в виде ионов, а слабый электролит H2O оставляем в виде молекул:

K+ +MnO4- + K++NO2- +K++OH- ®2K++ MnO42- +K++NO3- + H2O

2. В уравнении присутствуют ионы OH-, следовательно, реакция протекает в щелочной среде.

3. Определяем частицы, изменившие свой заряд или состав:

MnO4- ® MnO42- и NO2- → NO3-

4. На основании этих превращений составляем материальный баланс с участием частиц среды. Ион MnO4- сохранил свой состав, но изменил заряд. Ион NO2- в щелочной среде с участием 2 моль OH- приобрел 1 моль атомов кислорода:

MnO4- ® MnO42-

NO2- + 2 OH-→ NO3- + Н2O

5. Полученные полуреакции необходимо уравнять по зарядам. В первом уравнении слева суммарный заряд равен (-1), а справа – (-2), значит, перманганат-ион MnO4-присоединил 1 электрон и восстановился. Во втором уравнении слева (-3), а справа – (-1), следовательно, ион NO2- потерял 2 электрона и окислился:

MnO4- + ē ® MnO42-

NO2- + 2 OH- + 2ē→ NO3- + Н2O

6. Для соблюдения электронного баланса первое уравнение необходимо умножить на 2, после чего просуммировать уравнения:

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru + MnO4- + ē ® MnO42- 2

NO2- + 2 OH- + 2ē→ NO3- + Н2O

окислительно-восстановительных реакций - student2.ru 2MnO4- + NO2- + 2 OH- ® 2MnO42- + NO3- + Н2O

7. Далее переносим коэффициенты в исходное уравнение:

2KMnO4 + KNO2 +2KOH =2K2MnO4 + KNO3 + H2O

и проверяем материальный баланс.

Пример 4. Рассмотрим метод электронно-ионных уравнений для реакции, в которой окислитель является одновременно и средой на примере:

I2 + HNO3® HIO3 +NO2 +H2O

В этой реакции азотная кислота HNO3 одновременно содержит окислитель ион NO3- и создает кислую среду (наличие ионов Н+).

1. Представим молекулярное уравнение в ионно-молекулярном виде. Простое вещество I2, газ NO2, и слабый электролит H2O оставляем в виде молекул:

I2 + H+ + NO3-® IO3- +NO2 +H2O

2. Далее составим полуреакции окисления и восстановления с учетом того, что реакция протекает в кислой среде, и для соблюдения электронного баланса умножим первое уравнение на 10, а затем полуреакции просуммируем :

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru NO3- + 2H+ + ē®NO2 +H2O 10

+ I2 + 6H2O - 10ē ® 2IO3- + 12H+

окислительно-восстановительных реакций - student2.ru

10NO3- + 20 H+ + I2 + 6H2O®10NO2 +10 H2O + 2 IO3- + 12H+

После сокращения ионов H+ в левой и правой частях уравнения получим суммарное ионно-молекулярное уравнение:

10NO3- + 8 H+ + I2 ®10NO2 +4 H2O + 2 IO3-

3. Затем полученные коэффициенты перенесем в молекулярное уравнение реакции. Учитывая, что ионы NO3- и H+ входят в состав одного и того же соединения, а количество их разное, перед HNO3 ставится максимальный коэффициент, так как часть азотной кислоты расходуется на создание кислой среды. Таким образом, полное уравнение:

I2 + 10HNO3®2HIO3 +10NO2 +4H2O

Пример 5. Окислительно- восстановительная реакция выражается ионным уравнением: Cr2O72– + I + H+ → Cr3+ + I2 + H2O

Составьте полное молекулярнoe уравнениe.

Решение. Полное молекулярное уравнение означает, что в уравнение входят нейтральные вещества и имеется материальный баланс по атомам всех

окислительно-восстановительных реакций - student2.ru элементов. Чтобы создать баланс, необходимо расставить коэффициенты в уравнении. Для определения коэффициентов используем метод электронно-ионных уравнений:

окислительно-восстановительных реакций - student2.ru + Cr2O72–+ 14 H+ +6 ē → 2 Cr3+ + 7H2O

окислительно-восстановительных реакций - student2.ru 2I - 2 ē окислительно-восстановительных реакций - student2.ru → I2 3

Cr2O72– +6 I + 14 H+ →2 Cr3+ + 3I2 + 7H2O

Для написания молекулярного уравнения к имеющимся в реакции ионам подбираем противоположно заряженные ионы таким образом, чтобы нейтральные вещества являлись сильными электролитами. К анионам Cr2O72– и I добавляем такие катионы, c которыми анионы образуют хорошо растворимые соли (например, К+ и Na+); а к катионам Н+ добавляем такой кислотный остаток, который приводит к образованию сильной кислоты (например, SO4 2-). Таким образом, получаем уравнение:

К2Cr2O72– +6NaI + 7H2SO4 → Cr2(SO4) + 3I2 + 3H2O

Введение в левую часть уравнения ионов К+ и Na+ приводит к образованию соответствующих солей в правой части уравнения:

К2Cr2O72– +6NaI + 7H2SO4 = Cr2(SO4)3 + 3I2 + 7H2O + K2SO4 + 3Na2SO4

ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ.ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ

Наши рекомендации