Образование хелатных комплексов

Число: 2131

Известно много веществ (лигандов), способных связываться с металлами. Они часто образуют с ними хелатные соединения. Если металл оказывается заключенным в лиганде между такими элементами, как N, O или S, то образуется хелатное кольцо.

В зависимости от количества вступивших во взаимодействие атомов металлов и лиганд могут образовываться комплексы 1:1, 1:2 и др.

Рассмотрим три основных вида лигандов, образующих одно кольцо в комплексе 1:1 (бидентатные лиганды). На рис. 9.1 представлены три основных типа хелатных соединений.

Образование хелатных комплексов - student2.ru
Рис. 9.1. Три основных типа комплексов (стехиометрия 1:1) Стрелки в кольце показывают направление смещения в норме неподеленной пары электронов от атомов O, N или S к металлу

При содержании двух электронодонорных групп заряд катиона металла при образовании хелатного соединения не меняется (этилендиамин). Лиганды могут содержать также одну электронодонорную и одну анионную группы, как в глицине. В этом случае заряд металла уменьшается на единицу. И наконец, лиганд может содержать две анионные группы (например, щавелевая кислота), в этом случае заряд металла уменьшается на две единицы. Образование хелатных связей атомами кислорода и азота происходит обычно лишь в тех случаях, когда при этом получаются пяти- и шестичленные циклы. Пятичленные циклы значительно стабильнее. Однако при образовании хелатных связей через серу возникают устойчивые четырехчленные циклы (рис. 9.2).

(Me)2N – C = S

│ ¯

S – Cu+ Рис. 9.2. Комплекс медь-диметилдитиокарбамат

Комплексы в соотношении 2:1 могут образовываться в присутствии избытка лигандов. Лиганды типа щавелевой кислоты используют заряд для образования комплексов 1:1, однако они могут соединяться в дальнейшем с комплексом этилендиаминового типа, образуя смешанные комплексы. Комплексы 1:1 глицинового типа способны соединяться с другими лигандами этого типа. Комплекс 1:1, образованный лигандами, подобными этилендиамину, может соединяться с любым из трех типов лигандов.

Для оценки прочности связей (варьирующейся в широких пределах для разных комплексов) применяют константы устойчивости, характеризующие равновесие между одним или несколькими лигандами и одним ионом металла, подчиняющееся закону действия масс. Так, для комплекса в соотношении 1:1 константа устойчивости (q) рассчитывается следующим образом:

[MeX]

q = –––––––, (9.1)

[Me][X]

где в числителе находится концентрация комплекса, а в знаменателе – концентрация образующих его компонентов.

Часто необходимо знать общую константу устойчивости (b), представляющую собой произведение частных констант. Произведение двух частных констант обозначают как b2 (b2 = q1×q2 в случае соединения катиона металла с двумя молекулами лиганда, с тремя молекулами – b3= q1×q2× q3 и т. д.).

Константы устойчивости обычно определяют потенциометрическим титрованием лигандов в присутствии или отсутствии металла и обработкой результатов посредством довольно сложных вычислений.

Следует подчеркнуть, что понятие «лиганд» относится не ко всем присутствующим в системе молекулам органического соединения, а только к части, находящейся в соответствующей форме, которая может связывать катион металла. В случае этилендиамина, глицина и щавелевой кислоты лигандами могут служить неионизированные молекулы, моно- и дианионы соответственно. Поэтому, если при сравнении относительной реакционной способности лигандов при физиологических условиях пользуются константами устойчивости, необходимо учитывать и значения рКа лигандов.

По сравнению с ферментами, обладающими высокой специфичностью в отношении определенного металла, среди синтетических металлосвязывающих агентов подобная избирательность встречается значительно реже. Металлы по своему сродству к большинству хелатирующих агентов располагаются примерно в следующем порядке (от наибольшего сродства к наименьшему):

Fe3+, Hg2+, Cu2+, Al3+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Cd2+, Mn2+, Mg2+, Ca2+, Li+, Na+, K+.

Некоторые из приведенных двухвалентных металлов расположены друг за другом в периодической системе следующим образом (в скобках указаны атомные номера): Mn (25), Fe (26), Co (27), Ni (28), Cu (29), Zn (30). В этом ряду, называемом первым рядом переходных элементов, сродство к хелатирующим агентам последовательно увеличивается, достигая максимума у меди (Cu2+). Повышение сродства к хелатирующим агентам является следствием уменьшения ионного радиуса. Эта зависимость позволяет объяснить последовательность расположения металлов в приведенном выше ряду. С увеличением валентности металла происходит уменьшение его радиуса, поэтому неудивительно, что Fe3+ имеет большее сродство, чем Fe2+, и ионы трехвалентных металлов располагаются в начале ряда, тогда как одновалентные – в конце. Приведенный порядок увеличения сродства металлов к хелатирующим агентам сохраняется для большинства лигандов.

Хелатообразование зависит от степени ионизации хелатообразующих агентов. Вещества, обладающие меньшим сродством к металлам (на что указывает более низкая константа устойчивости), за счет различий в значениях рКа могут образовывать значительно больше анионов, чем другие агенты.

В этом случае вещество, обладающее меньшим сродством к металлу, может присоединить большее количество катионов металла, чем вещества, у которых это сродство больше. Это объясняется тем, что для хелатообразования необходимо не только наличие сродства между лигандом и металлом, но также быстрое образование анионов лиганда из агента (или молекул лиганда). Таким образом, существует своего рода конкуренция между константами устойчивости и константами ионизации.

Большинство металлов легче соединяются с лигандами, содержащими кислород, чем серу. Однако Cu+, Ag+, Hg2+, As+ и Sb3+ отдают предпочтение сере; у Cu2+, Ni2+ и Co2+ сродство к сере несколько выше, чем к кислороду, если сера находится в неионизированном состоянии, как, например, в органических сульфидах.

Еще одним фактором, влияющим на относительное сродство ряда металлов, служит изменение окислительно-восстановительного потенциала металла, вызванного образованием хелатных соединений с металлами, имеющими переменную валентность (например, Cu, Fe, Co, Mn, Mo, V).

Вследствие хелатообразования такие металлы могут даже изменять первоначальную валентность.

Следует помнить, что величины потенциалов колеблются от плюс 2 В для наиболее сильных окислителей до минус 2 В для самых сильных восстановителей. В качестве примера можно привести соединения кобальта. Соли двухвалентного кобальта обычно устойчивы в водных растворах, тогда как соли трехвалентного кобальта мгновенно разлагаются водой с выделением кислорода. Тем не менее после образования хелатного соединения с этилендиамином потенциал падает настолько резко, что комплекс с двухвалентным кобальтом легко окисляется до более стабильного соединения.

Рассматривая другие аспекты взаимодействия металл–лиганд, следует отметить, что металл может изменять избирательность органического лиганда: а) влияя на распределение электронов в лиганде; б) повышая реакционную способность активного центра лиганда; в) вызывая изменение конформации лиганда; г) обеспечивая возможность присоединения или отрыва электрона; д) увеличивая липофильность лиганда и, следовательно, его способность проникать в живую клетку.

Металлы в живой клетке

Биологические эффекты хелатирующих агентов определяются действием самих металлов на отдельные клетки, органы и т. д.

Живые организмы нуждаются в катионах металлов, обеспечивающих протекание многих жизненно важных процессов. Более того, многие из этих металлов необходимы для всех форм жизни. Медь, железо, молибден, кобальт и иногда марганец принимают участие в окислительно-восстановительных процессах; действие цинка, магния и марганца связано с процессами гидролиза и переноса групп; кальций играет наиболее важную роль при создании гибких или жестких структур, а также может инициировать реакцию, вызывая по-видимому, структурные изменения (подобное действие иногда проявляет и магний), является вторичным мессенджером. Натрий и калий, благодаря их распространенности, служат переносчиками заряда; они очень слабо связываются и поэтому могут быстро обмениваться.

Когда речь идет о тяжелых металлах, то многие из них необходимы в следовых количествах. Повышенные же их концентрации в организме вызывают токсические эффекты.

Однако, ряд металлов, например свинец, ртуть и др., являются чужеродными. Токсическое действие чужеродных металлов часто обусловлено антагонизмом катионов. Так, например, свинец – известный нейротоксин, вытесняет кальций из некоторых отделов нервной системы и тем самым препятствует выделению нейромедиаторов. В 1960 г. широко распространившееся загрязнение восточного побережья Японии кадмием в сочетании с низким уровнем поглощения кальция привело к развитию у людей мучительной болезни – одной из разновидностей остеомиелита. Выяснилось, что причина этого заболевания – антагонизм кадмия и кальция.

С другой стороны, известны случаи синергического действия металлов. Например, показано, что внесение отдельных металлов в концентрациях, соответствующих предельно-допустимым (Канада, США), в культуру водорослей хлорелла, сценедесмус и других не влияло на рост клеток, тогда как их смесь сильно подавляла рост, даже при более низких концентрациях. Число таких примеров достаточно велико.

Относительно концентрационных эффектов металлов следует подчеркнуть, что реакция (ρ) организма на тяжелые металлы является двухфазной (рис 9.3).

Образование хелатных комплексов - student2.ru Образование хелатных комплексов - student2.ru
Рис. 9.3. Реакция организма на действие тяжелых металлов

В общем случае, если организм получает слишком мало металлов, ему наносится тяжелый ущерб. Это объясняется тем, что в организме содержится множество ферментов, которые могут функционировать только в присутствии тяжелых металлов, хотя бы в следовых количествах. Однако если организм получает слишком много металла, то наступает вторая фаза, связанная с токсическим действием избыточного количества.

Примером такой двухфазной реакции может служить действие меди на овес: как избыточное, так и недостаточное количество этого металла наносит вред процессам его роста и развития (см. рис. 7.1).

Рост микроорганизмов также часто зависит от концентрации одного или нескольких катионов металлов в питательной среде: следует избегать как избыточных, так и недостаточных концентраций, так как в любом случае рост будет заторможен.

Наши рекомендации