Какой удар со стороны классика!
Мир рухнул. Привычный мир физиков обрушился буквально в одночасье. Вот только что в физическом раю пели соловьи благолепия, пухли, как на дрожжах, жирные розы удовлетворенности, распространяя окрест благоуханные ароматы достижений. И вдруг бац — какая неприятность! Привычный рай трещит и разваливается на части, а из разломов начинают торчать невидимые ранее проблемы.
Я ничуть не шучу, мои маленькие друзья и товарищи покрупнее. Какие могут быть шутки о катастрофе мировоззрения!
Весь девятнадцатый век физика развивалась такими бурными темпами и добилась таких успехов, что гордость физиков за свою вотчину была вполне обоснованной. Удалось создать стройную непротиворечивую картину мира, в основе которой лежала ньютоновская механика. Скорости, траектории, законы движения массивных тел… Все это можно было определить, просчитать и, зная все координаты, массы и скорости тел, предсказать, где они окажутся в любой момент времени в будущем.
Иными словами, мир представлялся фатальным. Что такое фатализм? Всеобщая предопределенность — чему суждено случиться, того не миновать, как ни пытайся. От судьбы не уйдешь. Написано тебе на роду утонуть, значит утонешь… Именно такую «окаменевшую» и неизменяемую картину мира давала ньютоновская механика, в которой конечные координаты и другие параметры любого тела, любой частицы жестко детерминировались (предопределялись) начальными условиями движения. Понятно, что на практике данных обо всех частицах вселенной у нас нет, но в теории мир был именно таким — железно заданным формулами физических закономерностей.
Правда, о философской подоплеке своих механистических воззрений физики задумывались не особо, им просто нравилась та цельная картина мира, которая вырисовывалась к концу XIX века. Как движутся планеты, понятно. Законы распространения волн известны. Оптика позволяет делать очки и телескопы. Уравнения Максвелла, описывающие электромагнитное поле, уже написаны. Электротехника развивается бурными темпами. Плохо ли?
И когда о ту пору юный абитуриент пришел к своему профессору — физику Филиппу Жолли и сказал ему, что мечтает связать свою жизнь с физикой, тот томно отмахнулся:
— Ах, молодой человек! Физика, как наука, в общем и целом завершена, за исключением нескольких несущественных мелочей. Стоит ли вам портить себе жизнь? Займитесь лучше юриспруденцией или музыкой.
Этого юного абитуриента, который действительно отлично играл на фортепиано и даже был автором одной оперетты, звали Макс Планк. Это имя сегодня известно всем, кто учился в школе или хоть что-то слышал о физике.
Макс Планк — человек, который, уцепившись за те самые «несущественные мелочи», о которых говорил благодушный Жолли, взломал здание старой физики — и сам испугался содеянного.
Макс Планк — человек, основавший здание новой физики — квантовой.
Макс Планк, придумавший кванты, — человек, который сам в кванты не верил.
Именем Макса Планка названа одна из самых фундаментальных констант современной физики, описывающая базис нашего мира — «постоянная Планка». А на могиле Макса Планка вместо дат его жизни и смерти выбиты совсем другие цифры — значение постоянной Планка.
Планк прожил долгую нелегкую жизнь, пересекшую две мировые войны. Он пережил обоих своих сыновей, один из которых погиб в Первую мировую, а второй был в начале 1945 года повешен нацистами за участие в покушении на Гитлера. Дом Планка вместе с огромной библиотекой сгорел от попадания бомбы и почти 90-летний старик, в чем был, вместе с женой пешком отправился в никуда.
Знал ли тот юный мальчик Макс, стоявший перед маститым профессором Жолли — уважаемым ученым, который родился в эпоху Наполеоновских войн, сотрясавших Европу, — что ему самому, Максу Планку, придется пережить две огромные войны, потерять детей и перевернуть физику? Не знал, конечно. И знать не мог в принципе, ибо тот переворот в физике, коему Планк дал начало, убедительно показал человечеству: мир нефатален, вы можете изменить будущее! Мир принципиально непредсказуем. Он квантовый. И случайность вшита в самую основу бытия.
Так что же сделал Макс Планк такого, во что и сам не поверил?
Одной из тех неразрешимых «мелких проблемок», которые стояли перед физиками конца девятнадцатого века и о которой говорил умудренный профессор Жолли молодому Планку, была проблема излучения так называемого черного тела. Черное тело — это придуманный физиками теоретический конструкт, вымышленный объект, который все излучения поглощает и ничего не отражает. При этом черное тело постепенно нагревается и потому переизлучает тепло уже в собственном диапазоне.
Дивиться тому, что физики взяли да и выдумали что-то, в реальном мире не существующее, не стоит. Дело в том, что физика всегда оперирует некими идеальными моделями. Как и любая другая наука. Наука ведь не гонится за истиной, как вы, быть может, ошибочно предполагаете. Наука просто строит интеллектуальные модели. И проверяет их на соответствие реальности — работает или нет, можно с ее помощью делать предсказания или нельзя. Можно — хорошая теория, берем на вооружение. Нет — ошибочная.
Все научные теории без исключения имеют ограниченную область применения и строятся для решения практических задач. А так как человеческие хотелки все растут и растут, людям хочется получить больше и больше, область решаемых задач вскоре начинает превышать возможности теории. И она перестает работать в новых условиях. Приходится строить более общую теорию, в которую старая теория входит частным случаем. Или же просто отказываться от старой теории, полностью меняя научную парадигму. Вы, я надеюсь, знаете, что такое парадигма? Парадигма — это система устоявшихся взглядов.
Так вот, в стройном здании физики позапрошлого века была одна теоретическая неясность. Исследуя излучения разных нагретых тел, физики заметили, что построенные ими красивые теории не стыкуются с отвратительной реальностью. Из теории получалось, что нагретое абсолютно черное тело должно излучать бесконечно большую энергию, что абсурдно. Теория давала сбой.
Пытаясь привести такую хорошую теорию к такой неприятной практике, буквально за волосы таща формулы к реальности. Планк сделал гениальное допущение. Оно выглядело очень искусственным, но зато сразу позволило решить проблему на бумаге. Макс Планк предположил, что энергия излучения, которое отдает нагретое тело, испускается не сплошным потоком, а порциями, которые Планк назвал квантами.
Предположение, конечно, глупое. Ну, что значит «излучается порциями»? Вот у нас есть бак, заполненный водой. Мы открыли кран, и она потекла — сплошным потоком. А почему излучение от нагретого тела должно «течь» не сплошным потоком, а каким-то пунктиром? Это же волны! Они бегут сплошняком! Что еще за порции такие дурацкие?
Однако введение этих порций в формулы дало хороший результат и позволило, что называется, подогнать решение к ответу, известному из практических наблюдений.
Работая над моделью излучения черного тела, Планк часто прогуливался по улице с сыном, не переставая думать обо всем этом. И однажды признался мальчику:
— Или то, что я делаю, абсолютная бессмыслица, или самое большое открытие в физике со времен Ньютона!
Планк, который стоял на позициях классической физики, очень расстраивался из-за того, что ему пришлось выдумать эти вот «рваные волны», которые излучаются непонятными порциями. Он рассчитывал, что кто-нибудь вскоре придумает что-то получше и исправит ситуацию, избавив мир от его дурацких квантов.
Увы! Кванты никак не хотели из теорий убираться, без них никак не получалось.
Неужели энергия тоже квантована, как и вещество? Поясню… Вещество, как мы уже знаем, делимо. Мельчайшей его частичкой является атом. Может, и энергия тоже состоит из «атомов энергии»? Стоп! А при чем тут энергия, спросите вы, ведь речь у нас об излучении? Дело в том, что энергией в физике часто называют не только такую абстрактную вещь, как энергия кинетическая или энергия потенциальная, но и вполне конкретное электромагнитное излучение. Оно считается энергией в чистом виде, так сказать… В общем, Планку формулы подогнать к реальности удалось, но по смыслу получилась какая-то ерунда, какие-то «куски волн», «куски излучения», похожие на частицы.
Пока классическая физика осмысливала получившуюся ерундень, по ней нанесли еще один удар. На сей раз постарался Эйнштейн.
Эйнштейн — не только икона современной физики, но и самый известный физик среди простого народа. Не потому, что народ понимает его теории, а потому что Эйнштейн, волосатый и озорной, — любил фотографироваться, высунув язык.
Что же натворил Эйнштейн?
Не скрою, набедокурил он изрядно. Рассказываю.
В конце XIX века физиками был открыт так называемый фотоэффект. Очень интересное явление! Оно заключается в следующем: при освещении металлической пластины светом световые лучи выбивают из этой пластины электроны. Схемка эксперимента дана ниже.
Неожиданностью в этом опыте было то, что энергия выбиваемых светом электронов совершенно не зависела от интенсивности светового потока! Слабенький он был или мощный — это влияло только на количество выбитых электронов. А вот их энергия зависела, как ни странно, от частоты света. И для любого материала катода всегда существовала такая низкая частота излучения, что фотоэффект прекращался. Это назвали «красной границей фотоэффекта», потому что чем ниже частота света, тем он ближе к красному.
Еще любопытно, что никакой медленной «накачки» электронов энергией не было, электроны начинали вылетать из металла сразу после включения лампы, словно им не нужно было «раскачиваться», набирая энергию для вылета.
Вообще-то, волновая теория света предсказывала совершенно другой результат — электроны должны сначала какое-то время накапливать энергию, причем их энергия должна была зависеть от интенсивности излучения (яркий источник света или тусклый), а не от его частоты, то есть цвета лучей. Это что же получается? Теория плохая? Но в других случаях она прекрасно работает. А тут чего-то спотыкается. Мы уже знаем: так бывает. Любая функция имеет область определения, а любая теория имеет границы своего применения. Ученые как раз вышли на эту границу. И значит, пришла пора расширять теорию!
Явление фотоэффекта. Берется стеклянная лампа хитрой формы и из нее откачивается воздух. С разных сторон в стекло впаяны два электрода — катод и анод. На них подается напряжение от батареи. Однако никакого тока в сети нет, потому что цепь не замкнута. Но если начать облучать светом катод (К), световые волны станут выбивать из металла электрончики. Освободившись из металлического плена, они под действием притяжения со стороны положительно заряженного анода (А) летят к нему, образуя электрический ток и замыкая электрическую цепь
Это и сделал Эйнштейн. Он внес в ситуацию точно такое же предположение, какое внес Планк: излучение происходит «порциями». Ну то есть излучение — это не какая-то сплошная волна, как думали раньше, а короткие «кусочки», больше похожие вообще-то на частицы. Порция — это ведь часть, и само слово «частица» произошло от слова «часть».