Цели регрессионного анализа

Корреляционный анализ

Одна из наиболее распространенных задач статистического исследования состоит в изучении связи между выборками. Обычно связь между выборками носит не функциональный, а вероятностный (или стохастический) характер. В этом случае нет строгой, однозначной зависимости между величинами. При изучении стохастических зависимостей различают корреляцию и регрессию.

Корреляционный анализ состоит в определении степени связи между двумя случайными величинами X и Y. В качестве меры такой связи используется коэффициент корреляции. Коэффициент корреляции оценивается по выборке объема п связанных пар наблюдений (xi, yi) из совместной генеральной совокупности X и Y. Существует несколько типов коэффициентов корреляции, применение которых зависит от измерения (способа шкалирования) величин X и Y.

Для оценки степени взаимосвязи величин X и Y, измеренных в количественных шкалах, используется коэффициент линейной корреляции (коэффициент Пирсона), предполагающий, что выборки X и Y распределены по нормальному закону.

Коэффициент корреляции — параметр, который характеризует степень линейной взаимосвязи между двумя выборками, рассчитывается по формуле:

Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость) до 1 (строгая прямая пропорциональная зависимость). При значении 0 линейной зависимости между двумя выборками нет.

Регрессио́нный (линейный) анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых инезависимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция), а не причинно-следственные отношения.

Цели регрессионного анализа

1. Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)

2. Предсказание значения зависимой переменной с помощью независимой(-ых)

3. Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Функциональная зависимость характеризуется полным соответствием между изменением причины и изменением результативной величины и соответствием каждому значению признака - фактора определенного результативного признака.

В корреляционных связях между изменением факторного и результативного признаков нет полного соответствия и влияние отдельных факторов проявляется лишь в среднем при массовом наблюдении факторов, поскольку каждому значению факторного признака может соответствовать распределение значений результативного признака. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака фактора будет соответствовать целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направление своего воздействия.

Сравнивая между собой функциональные и корреляционные зависимости следует принять во внимание, что при наличие корреляционной зависимости устанавливается только тенденция изменения результативного признака при изменении величины факторного признака.

При исследовании корреляционных зависимостей между признаками решению подлежит широкий круг вопросов, к которым следует отнести:

1. предварительный анализ свойств совокупности единиц;

2. установление фактора наличия связи, определения ее направления и формы;

3. изменение степени точности связи между признаками;

4. построение регрессионной модели;

5. оценка модели, ее экономическое обоснование и практическое применение.

Наши рекомендации