Масс-спектрометрический метод. Метод основан на создании повышенного парциального давления пробного вещества (газа) в смеси веществ с одной стороны поверхности объекта контроля и отбора
Метод основан на создании повышенного парциального давления пробного вещества (газа) в смеси веществ с одной стороны поверхности объекта контроля и отбора проникающего через течи пробного вещества с другой стороны для масс-спектрометрического анализа на присутствие молекул пробного газа. Анализ осуществляется путем ионизации пробного вещества с последующим разделением ионов по отношению их массы к заряду под действием электрического и магнитного полей. Основные требования по проведению масс-спектрометрического неразрушающего контроля регламентированы ГОСТ 28517-80.
Благодаря серийному выпуску масс-спектрометрических течеискателей метод нашел широкое применение в практике промышленных испытаний. Метод позволяет помимо качественной оценки провести количественные измерения газового потока через течь с точностью до 10 %. Вместе с тем этот метод технически сложен, требует вакуума и по возможности его заменяют более простыми методами.
Масс-спектрометрический течеискатель состоит из трех основных частей: масс-спектрометрической камеры с магнитом, вакуумной системы и электрических блоков питания и измерения. Своей вакуумной частью он может присоединяться к самому объекту или к щупу в зависимости от выбранной схемы контроля.
Катарометрический метод.
Катарометрический метод течеискания основан на регистрации разницы в теплопроводности газа, вытекающего через сквозные отверстия контролируемого объекта. Работающие на этом принципе течеискатели обладают высокой чувствительностью и минимальными размерами. предназначенный для поиска утечек из резервуаров, сосудов и трубопроводов, а также для текущего контроля окружающей среды на присутствие летучих органических соединений.
Основным элементом течеискателя является сенсор, мгновенно определяющий изменение теплопроводности газа. При включении он автоматически калибруется по воздуху. Важным отличием течеискателя является его искробезопасное электрическое исполнение и возможность применения во взрывоопасных помещениях и средах.
31 Электронно-захватный метод.
Электронно-захватный метод основан на способности молекул некоторых газов захватывать электроны, превращаясь при этом в электроотрицательные ионы. Это свойство веществ называют сродством к электрону. Оно характеризуется энергией, выделяющейся при образовании отрицательно заряженного иона. Например, сродство к электрону атомов кислорода равно 1,46 эВ.
Под влиянием приложенного напряжения эти электроны перемещаются к аноду, вследствие чего в цепи возникает ток. При попадании в камеру чувствительного элемента газа, содержащего молекулы, обладающие сродством к электрону, возникают отрицательные ионы. Они обладают значительно большей, чем электроны, способностью к рекомбинации с положительными ионами азота, что в конечном итоге приводит к уменьшению числа электронов, попадающих на анод, и соответственно к уменьшению ионизационного (фонового) тока. Уменьшение этого тока при прохождении через чувствительный элемент пробного газа служит мерой его количества.
Так как различные газы обладают различной способностью К захвату электронов, то чувствительные элементы таких течеискателей характеризуются избирательностью, например, к галогеносодержащим, органическим соединениям. Чувствительность электроннозахватных чувствительных элементов к различным пробным газам зависит от степени электроотрицателыюсти или сродства к электрону этих газов. Однако электронное сродство пробного газа меняется с энергией свободных электронов. Средняя величина энергии электронов в ионизационной камере определяется электрическим полем и природой газа носителя. Средняя энергия свободных электронов при определенной напряженности электрического поля больше у одноатомных газов (например, аргон) и меньше у многоатомных, например, углекислый газ. При соответствующем подборе газаносителя и потенциала, приложенного к камере, можно получить электроны с любой средней энергией, вследствие чего электронно-захватные течеискатели могут быть сделаны селективно чувствительными к различным пробным газам.
Газогидравлический метод.
Галогенный метод. Метод широко применяется в технике течеискания и успешно конкурирует с другими методами. Метод используется при контроле изделий больших объемов или систем с сильно разветвленными трубопроводами. Ему отдается предпочтение при контроле герметичности объектов, в которых галогеносодержащие вещества используются в качестве технологических (аэрозольные упаковки, кондиционеры, холодильники и др.).
Галогены (от греч. halos и genes — рождающий) — химические элементы фтор, бром, йод, хлор, составляющие главную подгруппу VII группы периодической системы.
Галогенный метод основан на использовании эффекта увеличения термоионной эмиссии с поверхности накаленной платины в присутствии галогеносодержащих веществ (хладоны, четыреххлористый углерод и т.д.). Впервые этот эффект был обнаружен в 1944 г. Райсом. Автор этого открытия и другие специалисты, впоследствии изучавшие этот эффект, установили, что явление наблюдается как при атмосферном давлении, так и в вакууме, но в любом случае необходимо присутствие некоторого количества кислорода или воздуха. Галогенные устройства, основанные на этом эффекте, имеют характерную зависимость приращения тока от концентрации пробного вещества, которая имеет максимум по току, затем уменьшается, несмотря на увеличение концентрации галогенов.
На основании анализа последующих работ доказано, что в основе галогенного метода лежит каталитическая химическая реакция. Она происходит в несколько стадий: термическая диссоциация исходной молекулы пробного вещества, образование оксидов галогенов на поверхности платины и их распад. Плотность эмиссионного тока пропорциональна скорости этой основной реакции. Параллельно протекает реакция дезактивации чувствительного элемента благодаря воздействию углерода, образующегося при термическом распаде галогенов.