Е.Г. Большакова, Т.Г. Дмитриенко, Т.А. Радюшкина
СБОРНИК ДИАГРАММ
ПО ФИЗИЧЕСКОЙ ХИМИИ
Учебное пособие
САРАТОВ - 2005
ББК 24.5
Е.Г. Большакова, Т.Г. Дмитриенко, Т.А. Радюшкина
Сборник диаграмм по физической химии: Учебное пособие. – Саратов: СВИРХБЗ, 2005. – 27 с.
Настоящий сборник диаграмм по физической химии составлен в соответствии с учебной программой курса «Физическая химия», изучаемого в СВИРХБЗ.
В сборник включены основные диаграммы, которые используются на практических занятиях темы «Фазовые равновесия. Растворы», даны пояснения к их использованию.
Сборник предназначен для самостоятельной подготовки курсантов к практическим и лабораторным занятиям, к теоретическому зачету по дисциплине «Физическая химия», а также для использования на практических занятиях.
Данное пособие составлено кандидатом химических наук, доцентом Большаковой Е.Г., кандидатом химических наук, преподавателем Дмитриенко Т.Г. и преподавателем Радюшкиной Т.А.
ã Саратовский военный институт радиационной, химической
и биологической защиты, 2005
|
С помощью диаграммы Дебая (рисунок 1) можно определить деформационную поляризуемость молекулы aдеф (как для полярной, так и неполярной), собственный дипольный момент полярной молекулы , а также мольную поляризацию молекулы при любой температуре.
Рис. 1. Диаграмма Дебая для различных веществ
Для этого воспользуемся уравнением Дебая:
П = pNА aдеф + pNА ,
где – собственный дипольный момент полярной молекулы;
к – постоянная Больцмана, равная 1,38 × 10 –23 Дж/К;
Т – абсолютная температура системы в градусах Кельвина;
aдеф – деформационная поляризуемость молекул.
Первое слагаемое характеризует только неполярные молекулы. Полное уравнение применимо к полярным молекулам.
Уравнение Дебая можно представить как уравнение прямой линии в координатах П и 1/Т, которое будет иметь вид:
П = А +
Графическая зависимость мольной поляризации молекул от обратной величины абсолютной температуры и называется диаграммой Дебая (рисунок 2).
Рис. 2. Диаграмма Дебая в общем виде
Прямая 1 относится к неполярным веществам, у которых собственный дипольный момент равен 0 ( = 0).
Из графика хорошо видно, что поляризация неполярных молекул от температуры не зависит.
Прямая 2 характеризует полярные молекулы.
Измерив по графику отрезок А, отсекаемый прямой на оси ординат, который равен: А = pNА aдеф,
находят aдеф по формуле:
По тангенсу угла наклона прямой к оси абсцисс, который равен:
tg j = ,
|
При подстановке значений к, p, NA формула для вычисления упрощается: = 0,0128 (Д)
или = 0,0427 × 10 –30 (Кл × м2/В)
Следует помнить, что при нахождении значения tg j, которое равно отношению противолежащего катета к прилежащему, следует учитывать цену деления осей координат.
Например, пользуясь диаграммой Дебая (рисунок 1) определить и aдеф ацетона – (CH3)2CO.
1. По диаграмме Дебая для ацетона измеряют отрезок А, который равен 1 см, а с учетом цены деления по оси ординат А = 20 см3/моль
= 7,94 . 10 –24 см3 = 7,94( )3
2) Определяют tgj = 5,22 . 104 и подставляют в выражение для вычисления :
= 0,0128 = 2,91 Д
Пользуясь диаграммой Дебая, можно также определить поляризацию вещества П при определенной температуре.
Например, пользуясь диаграммой Дебая (рисунок 1), определить общую поляризацию для хлорбензола при Т = 800 К.
Решение:
1. По диаграмме Дебая на оси ординат находят значение , отвечающее Т = 800 К
= . 10000 = 12,5
На графике соответственно значению 12,5 по оси абсцисс находят значение П для хлорбензола, которое равно 59 см3/моль.
Однокомпонентные системы.