Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет
Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:
Единица активности в СИ — беккерель (Бк)
Примером a-распада служит распад изотопа урана 238U с образованием Th:
Скорости вылетающих при распаде a-частиц очень велики и колеблются для разных ядер в пределах от 1,4•107 до 2•107м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, a-частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.
Резонансное поглощение g-излучения.
(эффект Мёссбауэра)
Как уже указывалось, дискретный спектр g-излучения обусловлен дискретностью энергетических уровней ядер атомов. Однако, как следует из соотношения неопределенностей, энергия возбужденных состояний ядра принимает значения в пределах DE»h/Dt, где Dt— время жизни ядра в возбужденном состоянии. Следовательно, чем меньше Dt, тем больше неопределенность энергии DЕ возбужденного состояния. DE=0 только для основного состояния стабильного ядра (для него Dt®¥). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10-13 с, естественная ширина энергетического уровня примерно 10-2эВ.
Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состояний ядра, приводит к немонохроматичности g-излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии g-излучения.
При прохождении g-излучения в веществе помимо описанных выше процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить g-квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение g-излучения ядрами: ядро поглощает g-квант той же частоты, что и частота излучаемого ядром g-кванта при переходе ядра из данного возбужденного состояния в основное.
Наблюдение резонансного поглощения g-квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый g-квант имеет энергию Eg несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:
Eg=E-Eя,
Где Ея — кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е g-квант должен иметь энергию E'g несколько большую, чем Е, т. е.
E'g=E+Eя,