Троение атома и происхождение атомных спектров
Атом—дискретная частица вещества размером ~10-8 см, состоящая из положительно заряженного ядра радиусом ~10-12 см и движущихся вокруг него отрицательно заряженных электронов. Скорость электрона столь велика, что в атоме доминируют его волновые свойства. Длина волны движущегося электрона ~10-8 см соизмерима с атомными размерами, поэтому электрон нельзя представить в виде дискретного объекта, как это делается в классической физике, например при движении электронов в газоразрядной трубке. Электрон как бы размазан по атому в виде волны, и можно говорить лишь о вероятности его пребывания в какой-то точке внутри атома или о распределении плотности отрицательного заряда вокруг ядра, которое может быть достаточно сложным.
Области с максимальной плотностью заряда называют электронными орбиталями или энергетическими уровнями, поскольку каждая орбиталь характеризуется определенной энергией. Энергетическое состояние всего атома определяется в основном энергией электронных орбиталей.
Каждый электрон и атом, а следовательно, энергетический уровень описывают набором четырех квантовых чисел: главного, побочного, магнитного и спинового.
Главное квантовое число п характеризует удаленность электрона от ядра и принимает значения 1, 2, 3, .... Чем больше n, тем дальше от ядра находится электронная орбиталь.
Побочное квантовое число l определяет форму орбитали и принимает значения 0, 1, 2, 3, ..., которые обозначают буквами s, р, d, f, .... Движущийся электрон обладает моментом количества движения. При l = 0 момент количества движения равен нулю и электрический заряд размазан по сфере, при l= 1 орбиталь имеет форму гантели.
Магнитное квантовое число т характеризует расположение орбитали в пространстве и принимает значения от –l до l. При l = 0 магнитное квантовое число равно нулю, при l = 1 оно принимает значения —1, 0, +1, и орбитали, имеющие форму гантели, располагаются вдоль осей прямоугольной системы координат.
Спиновое квантовое число ms, равное -1/2 и +1/2, отражает собственный момент импульса электрона.
По принципу Паули в атоме не может быть двух электронов с одинаковым набором квантовых чисел (хотя бы одно число должно отличаться). В противном случае силы отталкивания «вытолкнули» бы один из них на другую орбиталь. Поэтому многоэлектронный атом имеет сложную структуру: электроны с одинаковыми главными квантовыми числами образуют электронные слои-оболочки (уровни), обозначаемые буквами К, L, М, ... для /1 = 1, 2, 3, ... соответственно, а электроны с одинаковыми побочными квантовыми числами —подоболочки (подуровни) в пределах одной оболочки. Электроны с разными значениями l и т, но с одинаковым п могут оказаться равными по энергии (вырожденными), однако при воздействии какого-либо внешнего поля (электрического, магнитного и др.) вырождение снимается.
Происхождение атомных спектров
При изменении хотя бы одного квантового числа (главное n, побочное – l; магнитное – m; спиновое - ms) атом получает или отдает энергию. Это может произойти при взаимодействии атома с электромагнитным полем, при непосредственном обмене энергией с другими атомами или молекулами, например при столкновениях или при химических реакциях. В отсутствии внешних воздействий атом находится в основном состоянии, т. е. обладает наименьшей энергией. При получении энергии извне скорость электронов увеличивается— атом возбуждается.
Рис.3. Энергетические переходы в атоме |
Атом не может получить или отдать любое количество энергии; энергетический обмен осуществляется только конечными порциями, в частности квантами электромагнитного излучения (фотонами). Иными словами, атом может находиться только в определенных энергетических состояниях, отличающихся друг от друга на конечную величину. На рис. 3 энергетические состояния изображены горизонтальными линиями, из которых нижняя отвечает основному уровню, а остальные — возбужденным; переходы из одного состояния в другое обозначены стрелками.
Один атом за один акт поглощает или испускает только один фотон с определенной энергией (частотой). Вещество состоит из множества одинаковых атомов, способных переходить на разные энергетические уровни, испуская или поглощая фотоны разных частот. Совокупность всех фотонов одной и той же частоты составляет спектральную линию, при поглощении ее называют абсорбционной, при испускании—эмиссионной. Совокупность всех абсорбционных или всех эмиссионных линий называют абсорбционным (поглощение) или эмиссионным(испускание) спектром вещества.
Спектр поглощения получают, помещая исследуемое вещество в поле электромагнитного излучения (например, на пути светового потока), а для получения спектра испускания предварительно переводят атомы вещества в возбужденное состояние, что достигается подведением какого-либо вида энергии (тепловой, химической, электроразряда, электромагнитного излучения и т. п.); после возбуждения атомы через 10–9–10–7 с возвращаются в основное состояние, испуская фотоны либо теплоту. В последнем случае переход будет безызлучательным; на рис. 3 он изображен волнистой стрелкой.
Частота испускаемого или поглощаемого излучения определяется разностью энергии между электронными орбиталями ∆Е:
, где h – постоянная Планка
Абсолютная энергия квантовых состояний неизвестна, поэтому ее отсчитывают от некоторого уровня, условно принятого за нулевой, а именно от энергии ионизации, т. е. полного отрыва электрона от атома.
Энергия атомных орбиталей сильно различается. Так, для возбуждения электрона с ближайшей к ядру орбитали (главное квантовое число n=1) требуется более 6∙104 кДж моль–1 (испускаемые фотоны имеют частоту рентгеновского излучения), а для возбуждения внешних электронов достаточно 150— 600 кДж моль-1 (излучение ультрафиолетовой и видимой областей). С увеличением главного квантового числа энергия возбуждения ∆Е и частота излучения уменьшаются (рис. 2.).
Наиболее вероятны переходы с первого возбужденного уровня на основной Е0; соответствующие им спектральные линии называют резонансными. Электрон может перейти и в более высокое энергетическое состояние (Е2, Е3 и т. д.). Возвращение его на уровень Е0 может проходить через ряд промежуточных ступеней.
Рис. 4. Относительное расположение энергетических уровней различных квантовых состояний и изменение энергии при электронных переходах |
Внешние легко возбудимые электроны называют оптическими, переходы с их участием дают оптический спектр. Энергия возбуждения внешних электронов разных элементов неодинакова. Например, для получения резонансной линии щелочных металлов (переход Е1→Е0) требуется сравнительно невысокая энергия (~2эВ, длины волн лежат в видимой области), для неметаллов эта энергия существенно больше (~ 5 эВ, длины волн лежат в УФ-области). Чем больше внешних электронов, тем больше возможностей имеет атом для энергетических переходов, поэтому спектры металлов типа железа состоят из тысяч линий, а спектры щелочных элементов бедны ими.
Атомно-спектроскопические методы анализа.
Все многочисленные энергетические переходы электронов по орбиталям атома могут быть использованы в аналитических целях. Методы анализа, основанные на изменениях энергетического состояния атомов веществ, входят в группу атомно- спектроскопических методов, различающихся по способу получения и регистрации сигнала.
Оптические методы используют энергетические переходы внешних (валентных) электронов, общим для них является необходимость предварительной атомизации (разложение на атомы) вещества.