Полная влагоемкостъ (ПВ) или полная водовместимостъ
Это наибольшее количество влаги, которое может содержаться в почве при заполнении всех пор водой. Это сумма прочное вязанной, рыхлосвязанной и свободной воды в почве. Такое состояние влаги характерно для болотных почв, для горизонтов залегания грунтовых вод, при избыточном поливе и т.д. ПВ, в зависимости от пористости, может колебаться от 30 до 80 % веса (объема) почвы, в среднем составляет 40-50 %. Определение ПВ проводят в лабораторных условиях, насыщая образец почвы водой в течение 24 часов, путем помещения его в кристаллизатор с таким расчетом, чтобы вода достигала уровня почвы.
Экологическое значение влаги
Растения чувствительны как к недостатку влаги в почвах, так и к ее избытку. При недостатке влаги падает тургорное давление клеток, теряется их эластичность, резко снижается динамика всех биохимических процессов, сокращается поглощение углекислоты через устьица, в биомассе накапливаются вещества ингибиторы — все это приводит к падению биологической продуктивности или к полной гибели растений.
При избытке влаги у растений нарушается кислородный обмен растения, а в почвах накапливаются ядовитые закисные соединения. Для большинства сельскохозяйственных растений содержание воздуха в почве, обеспечивающее хорошие условия для роста и развития, а также надлежащий газообмен между почвой и атмосферой, равно 20—40% от порозности. Это обеспечивается уровнем влажности почвы, равной 60-80% от наименьшей (полевой) влагоемкости.
Растения по-разному приспосабливаются к недостатку или избытку влаги в почвах. При недостатке воды засухоустойчивые растения имеют повышенную сосущую силу корней, а также развивают мощную глубокопроникающую корневую систему. Уменьшение потери воды происходит благодаря закрытию устьиц, кутикулярной защите и уменьшению транспирирующей поверхности. Многие растения обладают способностью запасать воду.
Содержащаяся в почвах продуктивная влага в пределах от НВ до ВЗ неравноценна для растений в отношении ее доступности и эффективности для их роста и развития. Наибольшей доступностью отличается вода, находящаяся в пределах от наименьшей влагоемкости до влажности разрыва капилляров. Этот интервал для большинства растений характеризуется оптимальными условиями водообеспеченности. От влажности разрыва капилляров до влажности завядания наблюдается замедление роста. Интересна и другая экологическая особенность оптимума влажности: чем выше влажность почвы, тем меньше воды надо для создания органического вещества. При низкой влажности больше воды расходуется на создание биомассы, чем при высокой влажности.
Растения, приспособленные к избытку влаги, могут образовывать внутренние воздухоносные ткани в корнях (кукуруза, рис). Приспособление к плохой аэрации заключается в развитии неглубокой корневой системы в верхнем слое почвы, который лучше снабжается воздухом.
Важнейшей экологической характеристикой почвы является влажность устойчивого завядания или влажность завядания (ВЗ). Она характеризуется коэффициентом завядания. Его величина зависит от количества в почвах коллоидов и глинистых минералов. Почвы, богатые гумусом и тяжелые по механическому составу, отличаются более высокими значениями влажности, при которых растения начинают завядать, чем почвы песчаные и супесчаные.
Избыток влаги в почвах, когда влажность превышает НВ, так же неблагоприятен для растений, как и недостаток влаги. В затопленных почвах не содержится воздух. Растворенный в воде кислород, поступающий из атмосферы, быстро потребляется верхним и очень тонким слоем почвы. В самой же почве образуются метан, сероводород, углекислый газ и другие ядовитые для растений соединения. Растения до некоторой степени могут приспосабливаться к недостатку кислорода.
Экологический оптимум влажности почвы для нормального роста и развития неодинаков у разных групп растений. Например, для чайного куста оптимальная влажность составляет 80-90% от НВ. При влажности менее 80% начинается замедление роста. Оптимальная влажность для зерновых и корнеплодов составляет 55—70%, капусты и картофеля 60—75 и для трав — 65-80% от полевой влагоемкости пойменных торфяных почв.
Коэффициент транспирации – количество воды, испарившееся с поверхности растения на единицу произведенной продукции. Колеблется от 400 до 1000.
3. Состав почвенного воздуха. Экологическая значимость почвенного воздуха (баланс кислорода-углекислого газа в почве)
Почвенный воздух представляет собой смесь газообразных компонентов, заполняющих свободное поровое пространство в почве и находящихся в постоянном взаимодействии друг с другом, а также с жидкой и твердой фазами почвы.
Среди газообразных соединений выделяются собственна газы (CO2, O2), пары жидкостей (Н2O) и твердых веществ (Hg, I, др.). Состав почвенного воздуха и его содержание связаны с жизнедеятельностью растений, почвенных животных и микроорганизмов, взаимодействием с жидкой и твердой фазами почвы и газообменом с атмосферой. По отношению к атмосфере Земли почвенный! воздух выполняет важную экологическую функцию как источник, генератор и поглотитель газообразных веществ.
Основные компоненты почвенного воздуха — азот, кислород, аргон, углекислый газ и пары воды. В переувлажненных почвах в составе почвенного воздуха в значительных количествах содержатся газы H2S, Н2, СН4.
При нормальной аэрации средний состав газовой фазы почвы основном определяется соотношением интенсивностей газообмена с атмосферой, внутрипочвенного поглощения кислорода и выделения углекислого газа, а также равновесием в почве между газообразной фазой и жидкой и твердой фазами.
Сухой атмосферный воздух содержит при обычных условия 78,08% азота, 20,95 % кислорода, 0,93 % аргона, 0,035 % углекислого газа. Макросостав почвенного воздуха по сравнению с атмосферой характеризуется высокой динамичностью кислорода и углекислого газа. Концентрации O2 и СO2 в почвах могут изменяться в очень широком диапазоне: O2 — от 0,05 до 20,9 %, СO2 — от 0,03 до 20,0 %. Содержание O2 в почве закономерно уменьшается вниз) по профилю. Минимальное количество O2 (3—6%) наблюдается в газовой фазе болотных торфяных почв.
Состав атмосферного (А) и почвенного (Б) воздуха
Средняя концентрация СO2 в почвенном воздухе составляет около 0,25%, что в 7—8 раз больше, чем в атмосфере. Количество CO2 возрастает вниз по профилю. Максимальное количество CO2 наблюдается в переувлажненных почвах. Кислород в почвах расходуется в результате поглощения корнями растений для обеспечения их жизнедеятельности и на аэробную деструкцию (минерализацию) органического вещества. В процессе жизнедеятельности почвенных обитателей и минерализации органического вещества поглощается кислород и выделяется СO2. Микроорганизмы в два раза больше, чем растения, поглощают кислорода и выделяют углекислого газа. Им принадлежит главная роль в регулировании процессов выделения (эмиссии) и поглощения (стока) газов.
Среди микрокомпонентов почвенного воздуха, доля которых составляет до 10-2% от общего объема, наибольшее внимание притекают метан, оксид азота, а также токсичные для живых организмов газообразные примеси (СО, SO2). Заболоченные почвы производят в целом около четверти глобального количества метана, поступающего ежегодно в атмосферу. Производство метана в почвах характеризуется большой пространственно-временной изменчивостью в диапазоне от 0,02 до 200 мг/(м2·сут).
Газообразные соединения азота образуются и трансформируются в почве в результате процессов азотфиксации, аммонификации, нитрификации и денитрификации. Из общего количества азота, вносимого на поля с удобрениями, лишь 25 % выносится с поля с урожаем, 75 % азота удобрений теряется из почвы в процессе минерализации и выщелачивания.
Состав и состояние почвенного воздуха во многом определяют плодородие почв и продуктивность растений. Для большинства растительных культур признаки кислородного голодания и газовой интоксикации корневых систем возникают при концентрации O2 меньше 17—15%.
Источник: http://www.activestudy.info/sostav-pochvennogo-vozduxa/ © Зооинженерный факультет МСХА
4. Почвенная фауна и микрофлора: примеры живых организмов, их роль.
ПОЧВЕННАЯ ФАУНА
ПОЧВЕННАЯ ФАУНА.Почвенные животные по их размерам обычно подразделяются на 5 групп: нано-, микро-, мезо-, макрофауну и мегафауну. В группу нанофауны объединяют самые мелкие животные организмы, размер которых менее 0,16 мм. Это одноклеточные простейшие, живущие в воде, заполняющей почвенные поры. Микрофауна представлена мельчайшими многоклеточными организмами, преимущественно также живущими в почвенной воде (ногохвостки, клещи, нематоды, тихоходки, коловратки). Их размер от 0,16 до 1,28 мм. Мезофауна самая многочисленная часть почвенных животных. Их размер от 1,28 до 10,2 мм. Мезофауна представлена мокрицами, энхитреидами, насекомыми, многоножками, пауками, моллюсками и др. Несколько менее разнообразен состав макрофауны (размер животных от 10,2 до 81,6 мм). В этой группе наиболее распространены крупные личинки насекомых и дождевые черви. К мегафауне (размер более 81,6 мм) относят роющих позвоночных животных (змеи, ящерицы, кроты, слепыши, слепушонки, цокоры, мыши и проч). Почвенные животные заселяют, в основном, верхние (глубиной до 20–40 см) горизонты почвы, в сухих местностях лишь отдельные виды проникают на глубину нескольких метров.
Чем меньше размеры организмов, тем больше их содержится в почве. Простейшие содержатся в количестве более миллиона экземпляров в 1 г почвы. Насекомые и их личинки исчисляются тысячами экземпляров на 1 м2, ногохвостки и клещи – десятками тысяч, нематоды – миллионами. Число позвоночных в некоторых почвах достигает нескольких тысяч на 1 га.
Какие же группы животных определяют суммарную почвенную зоомасссу? Самые мелкие почвенные животные – простейшие, у них, несмотря на их многочисленность небольшая зоомасса. Представители мегафауны составляют менее 1% суммарной зоомассы в силу своей малочисленности. В основном, почвенная зоомасса определяется почвенной мезо- и макрофауной, т.е. беспозвоночными: членистоногими, нематодами, дождевыми червями и др.
На основании многолетних исследований была определена зоомасса почвенных беспозвоночных в ландшафтах разных природных зон (таблица 1). Как видно, наибольшая масса почвенных беспозвоночных (и, следовательно, и наибольшая общая почвенная зоомасса) приходится на широколиственные леса умеренного климата.
Таблица 1. Зоомасса почвенных беспозвоночных
Почвенная фауна – важный фактор почвообразования, влияющий на все свойства почвы, включая ее плодородие. Деятельность почвенной фауны ускоряет гумификацию и минерализацию растительных остатков, изменяет солевой режим и реакцию почвы, повышает её пористость, водо- и воздухопроницаемость. Огромное значение для почвообразования имеет деятельность роющих почвенных животных, которая способствует углублению гумусового горизонта и перемешиванию слоев почвы, а также создаёт водопрочную зернистую структуру почвы.
В почвах тайги, лиственных лесов и лесостепи умеренного пояса главными роющими почвенными животными являются земляные (дождевые) черви. Они содержатся в почве в огромных количества – от многих тысяч до миллиона особей на 1 га и составляют 90% и более всей зоомассы этих лесов. Установлено, что черви на протяжении одного года могут переработать до 50–380 т почвы на 1 га. Пронизывая почву ходами, глубина которых достигает 8 м, земляные черви рыхлят ее, способствуя этим лучшей аэрации и увлажнению почвы на глубине. Они перемешивают почвенные слои, ускоряют разложение растительных остатков, создают мелкокомковатую структуру почвы и, таким образом, повышают ее плодородие. В течение нескольких лет почвенная масса полностью проходит через организмы червей.
В почвах пустынь и сухих степей наибольшую роль в перерывании и перемешивании почвы играют муравьи и термиты. В степных почвах такую работу производят и грызуны-землерои (суслики, сурки, слепушонки, слепыши, мыши, полевки, тушканчики).
Деятельность термитов приобретает особенно большой размах в тропиках, где колонии этих животных строят сооружения высотой до 3 м и выше, с диаметром основания в несколько метров. Ежегодно термиты выносят на поверхность до 10 ц/га почвенной массы.
Как и растения, животные накапливают в своих организмах определенные химические элементы. Особенно характерно концентрирование кальция почвенными беспозвоночными.
Почвенные микроорганизмы разнообразны по составу и биологической деятельности. Это бактерии, актиномицеты, грибы, водоросли и простейшие. Суммарная масса микроорганизмов только в поверхностном горизонте достигает нескольких тонн на гектар. Численность микроорганизмов измеряется сотнями тысяч и миллионами в 1 г почвы. В целом, для планеты масса почвенных микроорганизмов составляет 0,01–0,1% от всей биомассы суши.
Бактерии – это одноклеточные организмы размерами в несколько сот мкм (1 мкм = 0,001 мм). Роль бактерий разнообразна. Одна из функций бактерий – усвоение ими легкоподвижных соединений, что способствует закреплению этих соединений в почве. Особенно следует отметить способность некоторых групп бактерий поглощать из воздуха молекулярный азот и переводить его в доступную для усвоения растений форму – этот процесс получил название фиксации азота. Запасы азота в атмосфере огромны, над каждым квадратным метром почвы висит столб азота весом более 7 тонн. Несмотря на то, что азот очень важен для питания растений, они с не способны усваивать его из атмосферы, он может быть использован бактериями только после предварительного связывания его азотофиксирующими микроорганизмами. В почве есть две группы азотофиксирующих бактерий. Одни из них, так называемые клубеньковыми, могут развиваться только на корнях различных бобовых растений, другие же свободно живут в почвенной среде. Наиболее важным представителем свободноживущих азотофиксирующих бактерий является Azotobacter, связывающий за одно лето в умеренных широтах до 30 кг азота на 1 га почвы. Деятельность клубеньковых бактерий гораздо эффективнее – в умеренных широтах при благоприятных условиях количество азота, связываемого этими бактериями, может достигать 200–300 кг на 1 га почвы.
Кроме бактерий азотофиксация осуществляется и некоторыми другими микроорганизмами (актиномицетами, грибами, сине-зелеными водорослями и др.), обитающими в почвах, пресных водоемах, морях и океанах. Фиксация молекулярного азота осуществляется и за счет грозовых разрядов (молний), однако количество связанного таким способом азота ничтожно, и оно не может играть заметную роль в азотном балансе почвы.
Еще одна не менее важная роль бактерий – разложение колоссального количества мертвого органического вещества, поступающего в почву, и освобождение химических элементов, прочно связанных в составе органических остатков. В результате деятельности бактерий эти химические элементы снова становятся доступными для усвоения их растениями.
Содержание бактерий в почве неравномерно: в самом верхнем горизонте содержится наибольшее их количество, ниже содержание бактерий резко уменьшается. Численность бактерий резко возрастает в непосредственной близости к корням высших растений. Эти своеобразные бактериальные чехлы вокруг корней называются ризосферой. Бактерии ризосферы играют важную роль в питании высших растений.
К актиномицетам относятся одноклеточные микроорганизмы, палочковидные клетки которых обладают способностью ветвиться. Содержание актиномицетов в почве весьма велико и часто измеряется миллиардами в 1 г почвы. Деятельность актиномицетов направлена на разложение различных органических веществ, некоторые актиномицеты выделяют антибиотики, подавляющие деятельность бактерий.