Специальная теория относительности
После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла, возник естественный вопрос: распространяется ли принцип относительности Галилея на электромагнитные явления, т.е. сохраняется ли вид уравнений Максвелла при рассмотрении их в различных инерциальных системах координат. Оказалось, что если воспользоваться преобразованиями координат Галилея, то вид уравнений Максвелла не сохраняется. Это приводило к далеко идущим выводам, в частности, к фундаментальному выводу о том, что законы; движения двух материальных субстанций – вещества и поля – существенно различны. В виду важности этого обстоятельства начался период длительного и всестороннего рассмотрения данного вопроса, как в части экспериментального подтверждения такого заключения, так и в части анализа уравнений Максвелла.
Одно из направлений исследований уравнений Максвелла, проведенных Лоренцем, показало, что можно формально добиться сохранения вида уравнений Максвелла при переходе от одной (х,у,z, t) к другой (х', y',z',t') инерциальной системе координат, если преобразование координат и времени произвести в соответствии со следующей схемой, которую сейчас называют преобразованиями Лоренца:
В дальнейшем оказалось, что соотношения Лоренца на самом деле имеют очень глубокое физическое содержание, а вначале преобразования Лоренца только вызвали целый ряд недоуменных вопросов. Например, из формул Лоренца следовало, что:
1) пространственные и временные преобразования не являются независимыми: в преобразование координат входит время, а в преобразование времени – координаты, что было совершенно непонятно;
2)время в разных системах координат течет по-разному.
Все возникшие противоречия разрешил А. Эйнштейн, создав специальную теорию относительности. Он выдвинул новую радикальную идею о связи пространства и времени. Найденное Эйнштейном решение проблемы потребовало отказа от прежних представлений о том, что пространство и время – совершенно различные и не связанные друг с другом понятия. С точки зрения Эйнштейна, реальный мир представляет собой не трехмерное, а четырехмерное пространство, поскольку оно также должно включать время, так как пространственные и временные координаты неразрывно связаны друг с другом и равноправны, образуя четырехмерное пространство-время.
Затем анализ принципа относительности Галилея привел А. Эйнштейна к выводу, что этот принцип является одним из фундаментальных законов, который применим не только к механическим, но и к любым другим явлениям природы – тепловым, электромагнитным, оптическим и т.д. В результате Эйнштейн сформулировал два постулата, легшие в основу специальной теории относительности:
1. Принцип относительности, который гласит, что в любой инерциальной системе все физические законы описываются одинаковым образом.
2. Принцип постоянства скорости света, утверждающего, что во всех инерциальных системах скорость света с одинакова и равна с= 108 м/с.
Первый принцип, по сути, распространяет принцип относительности Галилея для законов механики на законы электродинамики.
Второй принцип основан на уже достаточно хорошо установленном экспериментальном факте постоянства скорости света независимо от характера относительного движения источника и приемника света.
Специальная теория относительности Эйнштейна привела к необходимости пересмотра всех фундаментальных понятий естествознания – пространства и времени, материи и движения. Оказалось, что: с увеличением относительной скорости уменьшаются линейные размеры тел вдоль направления движения и увеличивается масса по законам:
где L0 и М0 – линейные размеры и масса тела в состоянии покоя.
Независимость скорости света ни от направления распространения, ни от скорости источника ставит точку в спорах относительно существования «мирового эфира», возмущениями которого являются электромагнитные волны. Таким образом, инвариантность скорости света является существенным подтверждением принципа относительности.
Установлена новая фундаментальная связь между энергией массой материальных тел, выражающаяся соотношением Е = тс2.
Из СТО, как видно, следует, что время, линейные размеры и масса тел являются относительными. Их величина зависит от того, в какой инерциальной системе координат мы их рассматриваем.
Оказывается, время в разных системах отсчета течет по-разному, а это значит, промежуток времени между какими-либо двумя событиями будет зависеть от выбора системы координат, и, следовательно, события, одновременные в одной инерциальной системе координат, будут не одновременными в других системах отсчета.
Как и в механике Ньютона, в СТО считается, что пространстве однородно и изотропно, а время однородно. Но если в механике Ньютона пространство и время не были связаны между собой, то в СТО они оказываются взаимосвязанными, образуя единое четырехмерное пространство-время.
Одно из следствий СТО – новый (по сравнению с классической механикой) закон сложения скоростей. Основанная на инвариантности скорости света специальная теория относительности приводит к интересным результатам, которые подтверждаются практикой. Прежде всего, это «парадокс близнецов», а также тот факт, что скорость сигнала, несущего информацию, не может превышать скорость света.
Из закона сложения скоростей следует, что если скорость света в какой-либо системе координат равна с, то она будет такой же и ппюсительно любой другой инерциальной системы координат. Действительно, если Ух=с и F0=c, то Vx >с, т.е. при сложении скоростей никогда не может получиться скорость больше скорости света. Таким образом, скорость света является максимально возможной скоростью в природе.
Из приведенных соотношений относительно длины, времени, массы видно, что эффекты СТО могут быть заметны только при скоростях, близких к скорости света, если же V, т.е. V/с «1, то так называемые релятивистские эффекты становятся малы, ими можно пренебречь и тогда релятивистская механика Эйнштейна переходит в классическую механику Ньютона.
В заключение следует подчеркнуть, что все выводы СТО в настоящее время нашли полное экспериментальное подтверждение.