Физические и химические свойства. Физические свойства золота
Физические свойства золота
Золото давно является объектом научных исследований и относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Постоянная решетки а составляет 4.07855 А при 25 С, что соответствует значению 4.0724 А при 20 С.
Большие расхождения существуют в результате измерения температуры плавления золота - от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота l при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 - 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Для чистого золота характерны низкое значение предела прочности s - порядка 13 - 13.3 кгс/мм - и высокое значение относительного удлинения - порядка 50% - в отожженном состоянии. Предел текучести s также очень низок, он равен 0.35 кгс/мм. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.
Химические свойства золота
Золото -- самый инертный металл, стоящий в ряду напряжений правее всех других металлов, при нормальных условиях оно не реагирует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от металлов обычных, легко разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что поколебало уверенность в его инертности.
Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:
2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN? + 2H2O + O2 > 4[Au(CN)2]? + 4 OH?
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °С с образованием хлорида золота(III), то в водном растворе (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl2 + 2Cl? > 2[AuCl4]?
Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3.
Со фтором золото реагирует в интервале температур 300?400°C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.
Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму).
В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:
4Au + 8NaCN + 2H2O + O2 > 4Na[Au(CN)2] + 4NaOH
Эта реакция лежит в основе важного промышленного способа извлечения золота из руд.
Но самыми необычными являются свойства мелкораздробленного золота. При восстановлении золота из сильно разбавленных растворов оно не выпадает в осадок, а образует интенсивно окрашенные коллоидные растворы - гидрозоли, которые могут быть пурпурно-красными, синими, фиолетовыми, коричневыми и даже черными. Так, при добавлении к 0,0075%-ному раствору H[AuCl4] восстановителя (например, 0,005%-ного раствора солянокислого гидразина) образуется прозрачный голубой золь золота, а если к 0,0025%-ному раствору H[AuCl4] добавить 0,005%-ный раствор карбоната калия, а затем по каплям при нагревании добавить раствор танина, то образуется красный прозрачный золь. Таким образом, в зависимости от степени дисперсности окраска золота меняется от голубой (грубодисперсный золь) до красной (тонкодисперсный золь). При размере частиц золя 40 нм максимум его оптического поглощения приходится на 510-520 нм (раствор красный), а при увеличении размера частиц до 86 нм максимум сдвигается до 620-630 нм (раствор голубой). Реакция восстановления с образованием коллоидных частиц используется в аналитической химии для обнаружения малых количеств золота. [4]
Вопрос 35:
Цинк и его соединения
Цинк - металл серебристо-белого цвета. В соединениях проявляет только одну степень окисления +2; соединения цинка неокрашены.
Нормальный окислительно-восстановительный потенциал в кислой среде системы Zn2+ / Zn равен -0,76 в, а в щелочной среде системы ZnO22- / Zn равен -1,22 в. Поэтому цинк растворяется в разбавленных кислотах и щелочах
Zn + 2НCl ZnCl2 + H2
Zn + H2SO4(разб) ZnSO4 + H2
Zn + 2NaOH + 2H2O Na2[Zn(OH)4] + H2
Цинк не разлагает воду, т.к. в водном растворе он быстро покрывается защитной пленкой оксида, которая предохраняет его от коррозии.
Цинк - сильный восстановитель и вытесняет менее активные металлы (стоящие справа в ряду напряжений) из растворов их солей
Zn + CuSO4 ZnSO4 + Cu
Оксид цинка проявляет амфотерный характер, растворяясь как в кислотах, так и в растворах щелочей:
ZnO + H2SO4 ZnSO4 + H2O
ZnO + 2NaOH + H2O Na2[Zn(OH)4]
При нагревании комплексный тетрагидроксицинкат-анион дегидратируется:
[Zn(OH)4]2- ZnO22- + 2H2O
Гидроксид цинка также проявляет амфотерные свойства. Он нерастворим в воде, но растворяется в кислотах и щелочах;
Zn(OH)2 + 2HCl ZnCl2 + 2H2O
Zn(OH)2 + 2NaOH Na2[Zn(OH)4]
Ион Zn2+ является энергичным комплексообразователем с координационным числом 4. В отличие от гидроксида алюминия гидроксид цинка растворяется в водном растворе аммиака:
Zn(OH)2 + 2NH3 [Zn(NH3)4](OH)2
Кадмий и его соединения
Кадмий - белый, блестящий, мягкий, ковкий металл; очень мало растворяется в неокисляющих кислотах, хорошо растворяется в разбавленной HNO3 (нормальный потенциал Cd / Cd 2+ = -0,40 в).
Кадмий образует только один ряд соединений, где он двухвалентен. Ион Сd 2+ - бесцветен.
Оксид кадмия СdО (коричневого цвета) и гидроксид кадмия Сd(ОН)2 (белого цвета) проявляют основной характер, растворяясь только в кислотах.
CdO + 2HCl CdCl2 + H2O
Cd(OH)2 + 2HCl CdCl2 + 2H2O
Кадмий является хорошим комплексообразователем (координационное число 4). Гидроксид кадмия растворяется в водном растворе аммиака:
Cd(OH)2 + 4NH3 [Cd(NH3)4](OH)2
Ртуть и ее соединения
Ртуть - серебристо-белый, блестящий, единственный жидкий при комнатной температуре металл; обладает низкой электропроводностью (она составляет 1,7% от электропроводности серебра) и большим коэффициентом термического расширения. На воздухе проявляет устойчивость. Реагирует с серой и галогенами:
Hg + S HgS
Hg + Br2 HgBr2
Со многими металлами дает сплавы (амальгамы) (экзотермическое образование). Пары и соединения чрезвычайно ядовиты (накапливаются в организме).
Ртуть не растворяется в соляной и разбавленной серной кислотах (в ряду напряжений металлов ртуть находится после водорода; нормальный потенциал Hg / Hg 2+ = +0,85 в). Ртуть легко растворяется в концентрированной азотной кислоте – образуется нитрат ртути (II):
Hg + 4HNO3 Hg(NO3)2 + 2NO2 + 2H2O
При растворении ртути в разбавленной азотной кислоте образуется нитрат ртути (I),
6Hg + 8HNO3 3Hg2(NO3)2 + 2NO + 4H2O
При растворении ртути в горячей концентрированной серной кислоте в зависимости от избытка ртути или кислоты образуются соли одновалентной или двухвалентной ртути:
Hg + 2H2SO4 HgSO4 + SO2 + 2H2O
2Hg + 2H2SO4 Hg2SO4 + SO2 + 2H2O
Ртуть растворяется в царской водке:
3Hg + 2HNO3 + 6HCl 3HgCl2 + 2NO + 4H2O
Оксид ртути (II) HgO; красный кристаллический или желтый аморфный порошок; плохо растворим в воде; раствор имеет слабо щелочную реакцию.<
Получение
3000 C | ||
2Hg + O2 | 2HgO | |
4000 C |
Hg2(NO3)2 2HgO + 2NO2
2Hg(NO3)2 2HgO + 4NO2 + O2
Химические свойства.
Легко восстанавливается; при нагревании разлагается на ртуть и кислород. Реагирует с кислотами с кислотами с образованием солей и воды.
Сульфид ртути (II) HgS (киноварь) – ярко-красный нерастворимый в воде порошок.
Hg + S HgS
Hg2+ + S2- HgS
Галогениды.
Получение
Hg + Br2 HgBr2
HgO + 2HCl(сулема) HgCl2 + H2O
Сулему также получают растворением ртути в царской водке.
Химические свойства:
HgI2 + 2KI K2[HgI4](реактив Несслера)
Реактив Несслера используется в качестве очень чувствительного аналитического реагента для обнаружения иона NH4+:
Сульфат ртути (II) и нитрат ртути (II).Получают растворением ртути или оксида ртути (II) в концентрированных серной или азотной кислотах соответственно.
Hg + 2H2SO4(горячая,конц.) HgSO4 + SO2 + 2H2O
HgO + H2SO4 HgSO4 + H2O
3Hg + 8HNO3(конц.) 3Hg(NO3)2 + 2NO + 4H2O
HgO + 2HNO3 Hg(NO3)2 + H2O
Более активные металлы легко вытесняют ртуть из ее солей:
Cu + Hg(NO3)2 Cu(NO3)2 + Hg