Ручная плазменная и микроплазменная сварка

Плазменная сварка применяется в сварке тонколистовых материалов (0,1 – 8 мм). В диапазоне толщин до 1 мм – микроплазменная сварка. Сварка больших толщин за один проход (до 40 мм) – в заготовительном производстве.

Преимущества:

примерно на порядок выше концентрация источника нагрева, соответственно (по сравнению с дуговой сваркой плавящимся электродом) более стабильная дуга, меньше зона термического влияния и ширина шва, более высокие скорости сварки;

применительно к малоамперным дугам позволяет работать в диапазоне тока до 0,1 А (все другие способы сварки 10 А и выше), соответственно позволяет осуществлять прецизионную сварку металлической фольги.

Недостаток:

Значительно более сложная технология и оборудование по сравнению с аргонно-дуговой сваркой вольфрамовым электродом, соответственно требует более высокой культуры производства и дороже.

Ручная плазменная и микроплазменная сварка - student2.ru Режимы сварки плазменной сварки продольных стыков труб

из коррозионно-стойкой стали

Ручная плазменная и микроплазменная сварка - student2.ru

Режимы сварки алюминиевого сплава AlMgSi проволокой того же состава

Для получения плазменной дуги служит устройство, называемое плазмотроном. Существует два способа подключения плазмотрона для генерации дуги прямого действия (рисунок 2,а) и для генерации дуги косвенного действия, называемой плазменной струёй (рисунок 2,б).

Плазмотроны, подключаемые для генерации дуги называют плазмотронами прямого действия, а для генерации плазменной струи косвенного действия. Чаще плазмотроны косвенного действия конструктивно отличаются от плазмотронов прямого действия системой охлаждения соплового узла плазмотрона, у первых она более эффективна.

В плазмотронах прямого действия плазменная дуга возбуждается между стержневым (как правило, вольфрамовым) электродом, вмонтированным в газовую камеру, и свариваемым изделием. Сопло электрически нейтрально от электродного (катодного) узла и служит для сжатия и стабилизации дуги.

В плазмотронах косвенного действия плазменная дуга создается между электродом и соплом, а поток плазмы выдувает плазменную струю.

Ручная плазменная и микроплазменная сварка - student2.ru

Рисунок 2. Схемы плазмообразования

Для плазменной сварки металлов обычно применяют плазмотроны с дугой прямого действия.

Сжатие столба дуги происходит следующим образом: рабочий газ, проходящий через столб дуги, нагревается, ионизируется и выходит из сопла плазмотрона в виде плазменной струи.

Плазменная дуга прямого действия имеет почти цилиндрическую форму, немного расширяющуюся у поверхности изделия.

Плазменная дуга косвенного действия (струя) имеет форму ярко выраженного конуса с вершиной, обращенной к изделию и окруженной факелом. Слой газа, омывающий столб дуги снаружи, остается относительно холодным, образуя тепловую и электрическую изоляцию между плазменной дугой и каналом сопла. Плотность тока дуги в плазмотронах достигает 100 А/мм2, а температура 15000 - 30000 0С.

Плазменная струя, истекающая из плазматрона с дугой прямого действия, совмещена со столбом дуги в отличие от плазматронов с дугой косвенного действия и поэтому характеризуется более высокой температурой и тепловой мощностью.

Процесс возбуждения дуги непосредственно между электродом и изделием осуществить очень трудно. В связи с этим сначала возбуждается дуга между электродом и соплом (дежурная), а затем при касании ее факела изделия происходит автоматическое зажигание основной дуги между электродом и изделием. Дежурная дуга при устойчивом процессе горения основной дуги отключается. Дежурная дуга обычно питается от того же источника, что и основная, через токоограничивающие сопротивления.

В плазмотронах с дугой прямого действия в изделие вводится дополнительное тепло за счет электронного тока и КПД их значительно выше, чем у плазмотронов с дугой косвенного действия. В связи с этим плазмотроны с дугой прямого действия целесообразно применять для сварки, резки, наплавки, а плазмотроны с дугой косвенного действия для напыления, нагрева и т.п.

ПЛАЗМЕННАЯ ДУГА МОЖЕТ БЫТЬ ИСПОЛЬЗОВАНА:

· при сварке тонколистового материала толщиной менее 1 мм, включая тугоплавкие металлы;

· при сварке металлов с неметаллами;

· для наплавки и нанесения покрытий путем расплавления электронной или дополнительно подаваемой в дугу присадочной проволоки;

· для пайки;

· разделительной резки и поверхностной обработки различных металлов.

Наши рекомендации