АТОМНО-КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МЕТАЛЛОВ. ГОУ ВПО «Тульский государственный университет»
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ
ГОУ ВПО «Тульский государственный университет»
КАФЕДРА ФИЗИКИ МЕТАЛЛОВ И МАТЕРИАЛОВЕДЕНИЯ
ЛЕКЦИИ
ПО КУРСУ «МАТЕРИАЛОВЕДЕНИЕ»
ДЛЯ СТУДЕНТОВ ЦДФО
ТУЛА2003
Разработала: доц., к.т.н. Фомичева Н.Б.
Утверждено на заседании кафедры ФММ
протокол № 9 от «26» июня 2003г
Зав.кафедрой ФММ ____________Гвоздев А.Е,
ВВЕДЕНИЕ
Материаловедение –наука, изучающая строение и свойства материалов и устанавливающая связь между их составом, строением и свойствами. Под материалами нужно понимать какметаллы, так и неметаллические соединения.
Наука «металловедение» –как часть материаловедения возникла в середине XIX в. Впервые связь между строением и свойствами металлов установил П.П.Аносов (1799-1855 гг.),применивший для изучения стали микроскоп. Позднее (1863 г.) микроскоп для исследования строения металлов использовал Сорби (Англия).Однако основы научного металловедения были заложены выдающимся русским металлургом Д.К.Черновым (1839-1921гг.),который за свои работы был назван в литературе отцом металлографии.
Продолжением работ Чернова Д.К. явились исследования Н.В.Гутовского, Н.П.Чижевского, Р.Аустена, а позднее А.М.Бочвара. Г.В.Курдюмова. Н.С.Курнакова и др.
Достижения в области физики прочности и пластичности за последние годы позволили перевести физическое металловедение на качественно новый уровень и обеспечили небывалый прогресс в разработке конструкционных и инструментальных материалов в различных областях техники.
АТОМНО-КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МЕТАЛЛОВ
1.1. Классификация металлов
Под металлами понимают определенную группу элементов, расположенную в левой части Периодической таблицы Д.И.Менделеева. В технике под металлом понимают вещества, обладающие "металлическим блеском", в той или иной мере присущим всем металлам, и пластичностью. По этому признаку металлы можно легко отличить от неметаллов, например дерева, камня, стекла или фарфора.
Особенность строения металлических веществ заключается в том, что они все построены в основном из таких атомов, у которых внешние электроны слабо связаны с ядром. Это обусловливает и особый характер химического взаимодействия атомов металла, и металлические свойства. Электроны имеют отрицательный заряд, и достаточно создать ничтожную разность потенциалов, чтобы началось перемещение электронов по направлению к положительно заряженному полюсу, создающие электрический ток. Вот почему металлы являются хорошими проводниками электрического тока, а неметаллы или не являются. Слабая связь наружных электронов с ядром обусловливает химические и физические свойства металлов.
В силу указанных выше особенностей металлы и их сплавы имеют следующее атомно-кристаллическое строение. В определенных местах кристаллической решетки располагаются положительно заряженые ионы, а наружные свободные электроны создают внутри металла, как бы легкотекучую жидкость, или электронный газ, который беспорядочно движется во всех направлениях. При определенных условиях, например при создании разности потенциалов, движение электронов получает определенное направление и возникает электрический ток.
Теория металлического состояния рассматривает металл как вещество, состоящее из положительно заряженных ионов, окруженных отрицательно заряженными частицами - электронами, слабо связанными с ядром. Эти электроны непрерывно перемещаются внутри металла и принадлежат не одному какому-то атому, а всей совокупности атомов.
Таким образом, характерной особенностью атомно-кристаллического строения металлов является наличие электронного газа внутри металла, слабо связанного с положительно заряженными ионами. Легкое перемещение этих электронов внутри металла и малая их связь с атомами обусловливают наличие у металлов определенных металлических свойств (высокая электро- и теплопроводность, металлический блеск, пластичность и др.)
Все металлы можно разделить на две большие группы - черные и цветные металлы.
Черные металлы темно-серого цвета, с большой плотностью (кроме щелочноземельных) , высокой температурой плавления, и во многих случаях обладают полиморфизмом. Наиболее типичным металлом этой группы является железо.
Цветные металлы чаще всего имеют характерную окраску: красную, желтую, белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления, для них характерно отсутствие полиморфизма. Наиболее типичным металлом этой группы является медь.
Все металлы - можно подразделить следующим образом:
1. Железные металлы - железо, кобальт, никель и близкий к ним по своим свойствам марганец. Кобальт, никель и марганец часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.
2. Тугоплавкие металлы (вольфрам), температура плавления которых выше, чем железа (т.е. 1539 оС),применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов.
3. Редкоземельные металлы (РМЗ) - лантан, церий, неодим, празеодим и др., объединяемые под названием лантаноидов, и сходные с ними по свойствам иттрий и скандий.
4. Щелочноземельные металлы (литий, калий, натрий и др) в свободном металлическом состоянии не применяются, за исключением специальных случаев.
Цветные металлы подразделяются :
1. Легкие металлы - бериллий, магний, алюминий, обладающие малой плотностью.
2. Благородные металлы - серебро, золото, металлы платиновой группы.
3. Легкоплавкие металлы - цинк, кадмий, ртуть, олово, свинец, висмут, таллий, сурьма и элементы с ослабленными металлическими свойствами - галлий, германий.
1.2.Кристаллическое строение металлов
Всякое вещество может находиться в трех агрегатных состояниях -твердом, жидком и газообразном.
Твердое вещество под воздействием сил тяжести сохраняет форму, а жидкое растекается и принимает форму сосуда. Однако это определение недостаточно для характеристики состояния вещества. Переход из твердого в жидкое и из жидкого в твердое состояние (так же как из газообразного в жидкое) происходит при определенной температуре и сопровождается резким изменением свойств.
В чем же различие между газообразным, жидким и твердым состояния- ми?
В газах нет закономерности расположения частиц (атомов, молекул);частицы хаотически двигаются, отталкиваются одна от другой и газ стремится занять возможно больший объем.
В твердых телах порядок расположения атомов определенный, закономерный, силы взаимного притяжения и отталкивания уравновешены, и твердое тело сохраняет свою форму.
В жидкости частицы ( атомы, молекулы ) сохраняют лишь так называемый ближний порядок, т.е. в пространстве закономерно расположено наибольшее количество атомов, а не атомы всего объема, как в твердом теле. Ближний порядок неустойчив: он то возникает, то исчезает под действием тепловых колебаний. Таким образом, жидкое состояние является как бы промежуточным между твердым и газообразным; при соответствующих условиях возможен непосредственный переход из твердого состояния в газообразное без расплавления - сублимации.
Правильное, закономерное расположение частиц (атомов, молекул) в пространстве характеризует кристаллическое состояние. Кристаллическое строение можно представить себе в виде пространственной решетки, в узлах которой расположены атомы.
1.3.Кристаллические решетки металлов
Кристаллическое состояние прежде всего характеризуется определенным, закономерным расположением атомов в пространстве.
Это обуславливает то, что в кристалле каждый атом имеет одно и то же количество ближайших атомов - соседей, расположенных на одинаковом от него расстоянии. Стремление атомов (ионов) металла расположиться ближе друг к другу, плотнее, приводит к тому, что число встречающихся комбинаций взаимного расположения атомов металла в кристаллах невелико.
Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку .
Простейшим типом кристаллической ячейки является кубическая решетка. В простой кубической решетке атомы расположены ( упакованы) недостаточно плотно (рис.1.1 ,а).
Стремление атомов металла занять места, наиболее близкие друг к другу, приводят к образованию решеток других типов: кубической объемноцентрированной, кубической гранецентрированной и гексагональной плотноупакованной (рис.1.1 ).
В кубической объемноцентрированной решетке (ОЦК) атомы расположены в углах куба и один атом в центре объема куба. В гранецентрированной кубической решетке (ГЦК) атомы расположены в углах куба и в центре каждой грани, в гексагональной решетке атомы расположены в углах и центре шестигранных оснований призмы и три атома в средней плоскости призмы.
Кубическую ОЦК решетку имеют металлы: Na, Li, W, V, Cr и др. Кубическую ГЦК решетку имеют Pb, Ni, Ag, Au, Cu и др.
Размеры кристаллической решетки характеризуются параметрами, или
периодами решетки. Кубическую решетку определяет один параметр - длина ребра куба. Параметры имеют величины порядка атомных размеров и измеряются в ангстремах. Например, параметр решетки хрома, имеющего структуру объемноцентрированного куба, равен 2,878 А, а параметр решетки алюминия, имеющего структуру гранецентрированного куба, 4,041 А.
Размеры гексагональной плотноупакованной решетки характеризуются постоянным значением с/а=1,633. При иных значениях с/а получается не плотноупакованная гексагональная решетка.
Некоторые металлы имеют тетрагональную решетку; она характеризуется тем, что размер ребра «с» не равен размеру ребра «а». Отношение этих параметров характеризует так называемую степень тетрагональности. Число атомов, находящихся на наиболее близком расстоянии от данного атома, называется координационным числом. Например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т.е. координационное число этой решетки равно 6 (рис. 1.2 ).
Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т.е. координационное число этой решетки равно 8. Координационное число для гранецентрированной решетки равно 12. В случае гексагональной плотноупакованной решетки координационное число равно 12.
1.4.Реальное строение металлических кристаллов
Кристаллы металлов обычно имеют небольшие размеры. Поэтому металлическое изделие состоит из очень большого числа кристаллов. Подобное строение называется поликристаллическим. Кристаллы неправильной формы в поликристаллическом агрегате называются зернами, или кристалликами.
Различие отдельных зерен состоит в различной пространственной ориентации и наименьшем расстоянии от данного атома для различных решеток.
1.5.Ориентации кристаллической решетки.
В общем случае ориентация кристаллической решетки в зерне случайна, с разной степенью вероятности может встретится любая ориентация ее в пространстве.
При очень медленном отводе тепла при кристаллизации, а также с помощью других специальных способов может быть получен кусок металла, представляющий собой один кристалл, называемый монокристалл. Характер и степень нарушения правильности или совершенства кристаллического строения определяют в значительной мере свойства металлов. Поэтому необходимо рассмотреть встречающиеся несовершенства кристаллического строения или что-то же самое строение реальных кристаллов.
Одним из видов несовершенств кристаллического строения является наличие незанятых мест в узлах кристаллической решетки, или иначе - вакансии, или атомных дырок (рис.1.3 ). Такой "точечный" дефект решетки играет важную роль при протекании диффузионных процессов в металлах.
Число вакансий при комнатной температуре очень мало по сравнению с общим числом атомов (примерно 1 вакансия на 1018 атомов), несильно увеличивается с повышением температуры, особенно вблизи температуры плавления (1 вакансия на 104 атомов).
Другим важнейшим видом несовершенства кристаллического строения являются так называемые дислокации (рис.1.4 ). Представим себе, что в Кристаллической решетке по каким-либо причинам появилась лишняя полуплоскость атомов, так называемая экстраплоскость. Край такой плоскости образует линейный дефект (несовершенство) решетки, который называется краевой дислокацией. Краевая дислокация может простираться в длину на многие тысячи параметров решетки, может быть прямой, но может и выгибаться в ту или иную сторону. В пределе она может закрутиться в спираль, образуя винтовую дислокацию. Вокруг дислокации возникает зона упругого искажения решетки. Расстояние от центра, дефекта до места решетки без искажения принимают равным ширине дислокации, она невелика и равна нескольким атомным расстояниям.
Таким образом , правильность кристаллического строения нарушается двумя видами дефектов - точечными (вакансии) и линейными (дислокациями). Вакансии непрерывно перемещаются в решетке, когда соседствующий в ней атом переходит в "дырку", оставляя пустым свое старое место. Повышение температуры, тепловой подвижности атомов увеличивает число таких актов и увеличивает число вакансий.
Линейные дефекты не двигаются самопроизвольно и хаотически, как вакансии. Однако достаточно небольшого напряжения, чтобы дислокация начала двигаться, образуя плоскость, а в разрезе - линию скольжения С.
Свойства отдельно взятого кристалла (монокристалла) по данному направлению отличаются от свойств в другом направлении и, естественно, зависят от того, сколько атомов встречается в этом направление. Различие свойств в зависимости от направления испытания носит название анизотропии. Все кристаллы анизотропы. Анизотропия - особенность любого кристалла, характерная для кристаллического строения.
КРИСТАЛЛИЗАЦИЯ