Применение инструментальной углеродистой стали
У7, У7А Для обработки дерева: топоров, колунов, стамесок, долот; пневматических инструментов небольших размеров: зубил, обжимок, бойков; кузнечных штампов; игольной проволоки; слесарно-монтажных инструментов: молотков, кувалд, бородок, отвёрток, комбинированных плоскогубцев, острогубцев, боковых кусачек и др.
У8, У8А, У8Г, У8ГА, У9, У9А дляизготовления инструментов, работающих в условиях, не вызывающих разогрева режущей кромки; обработки дерева: фрез, зенковок, поковок, топоров, стамесок, долот, пил продольных и дисковых; накатных роликов, плит и стержней для форм литья под давлением оловянно-свинцовистых сплавов. Для слесарно-монтажных инструментов: обжимок для заклепок, кернеров, бородок, отвёрток, комбинированных плоскогубцев, острогубцев, боковых кусачек. Для калибров простой формы и пониженных классов точности; холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в том числе для часов и т. д.
У10А, У12А Для сердечников.
У10, У10А Для игольной проволоки.
У10, У10А, У11, У11А Для изготовления инструментов, работающих в условиях, не вызывающих разогрева режущей кромки; обработки дерева: пил ручных поперечных и столярных, пил машинных столярных, сверл спиральных; штампов холодной штамповки (вытяжных, высадочных, обрезных и вырубных) небольших размеров и без резких переходов по сечению; калибров простой формы и пониженных классов точности; накатных роликов, напильников, шаберов слесарных и др. Для напильников, шаберов холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в том числе для часов и т. д.
У12, У12А Для метчиков ручных, напильников, шаберов слесарных; штампов для холодной штамповки обрезных и вырубных небольших размеров и без переходов по сечению, холодновысадочных пуансонов и штемпелей мелких размеров, калибров простой формы и пониженных классов точности.
У13, У13А Для инструментов с повышенной износостойкостью при умеренных и значительных удельных давлениях (без разогрева режущей кромки); напильников, бритвенных лезвий и ножей, острых хирургических инструментов, шаберов, гравировальных инструментов.
Стали и сплавы с особыми св-ми(магнитные и нержавеющие)
К сталям и сплавам с особыми физическими свойствами относятся те, работоспособность которых оценивается не только по механическим, но и по ряду других (теплофизических, магнитных, электрических и др.) свойств требуемого уровня.
Стали и сплавы с особыми физическими свойствами часто называют прецизионными.
Прецизионные сплавы - металлические сплавы с особыми физическими свойствами (магнитными, электрическими, тепловыми, упругими) или редким сочетанием свойств, уровень которых в значительной степени обусловлен точностью химического состава, отсутствием примесей, тщательностью изготовления и обработки.
Стали и сплавы с особыми физическими свойствами имеют очень широкий диапазон использования. Наибольшее распространение получили стали и сплавы:
· с заданным температурным коэффициентом линейного расширения;
· с высоким электросопротивлением (при повышенной жаростойкости);
· магнитные стали и сплавы.
Стали и сплавы ным температурньм коэффициентом линейного расширения (ГОСТ 10994-74) предназначены для впаивания изделий на их основе в стеклянные и керамические корпуса вакуумных приборов. Химический состав этих сплавов базируются на системе Fe+Ni + Co с небольшим количеством меди. Точный состав каждого сплава устанавливается для конкретного вида стекла или керамики, используемых в изделиях, из условия равенства их температурных коэффициентов линейного расширения. Особое место в сплавах с заданным температурным коэффициентом линейного расширения занимают сплавы с малым коэффициентом, существенно не меняющимся в высокотемпературной области. Эти сплавы предназначены для изготовления деталей измерительных приборов и технических средств.
Стали и сплавы с высоким электросопротивлением (ГОСТ 10994-74) должны сочетать высокое сопротивление (1,06... 1,47 мкОм·м, что более чем в 10 раз выше, чем у низкоуглеродистой стали) и иметь жаростойкость 1000...1350°С. К технологическим свойствам таких сплавов предъявляются требования высокой пластичности, обеспечивающей хорошую деформируемость на прутки, полосу, проволоку и ленты, в том числе малых сечений, а к потребительским - малая величина температурного коэффициента линейного расширения. элемента. Чем больше в сплавах хрома и алюминия, тем выше их жаростойкость. Количество углерода в сплавах строго ограничивают (0,06...0,12%), так как появление карбидов снижает пластичность и сокращает срок эксплуатации изделий.
Наибольшее распространение в технике получили сплавы ферритного класса: Х13Ю4 (фехраль), ОХ23Ю5 (хромель) и ОХ27Ю5А. Эти сплавымалопластичны, поэтому изделия из них, особенно крупные, следует выполнять при подогреве до 200...300°С. сопротивление ползучести ферритных сплавов невелико, поэтому нагреватели при высоких (1150...1200°С) температурах нередко провисают под действием собственной массы.
Высоким электросопротивлением обладают сплавы на основе никеля - Х20Н80 (нихромы). Нихромы с железом называют ферронихромами, например, сплав Х15Н60, содержащий 25% Fe. Ферронихромы обладают более высокими технологическими свойствами и дешевле, чем нихромы. Стали и сплавы с высоким электросопротивлением предназначены для изготовления деталей и элементов нагревательных приборов, реостатов, а также резисторов, терморезисторов, тензодатчиков и др.
Магнитные стали и ставы
Магнитные стали и сплавы классифицируют на магнитно-твердые, магнитно-мягкие и парамагнитные.
Магнитно-твердые стали и сплавы (ГОСТ 17809-72) по своим потребительским свойствам характеризуются высокими коэрцитивной силой и остаточной индукцией и соответственно высокой магнитной энергией.
По химическому составу промышленные магнитно-твердые стали и сплавы в порядке возрастания их коэрцитивной силы и магнитной энергии представляют собой:
· высокоуглеродистые стали (1,2... 1,4% С);
· высокоуглеродистые (1%С) сплавы железа с хромом (до 2,8%), легированные кобальтом;
· высокоуглеродистые сплавы железа, алюминия, никеля и кобальта, называемые алнико.
Магнитно-твердые стали и сплавы используются для изготовления различного рода постоянных магнитов. В промышленности наиболее широко применяют сплавы типа алнико (ЮНДК15, ЮН14ДК25А, ЮНДК31ТЗБА и др.). Эти сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем. После литья проводят только шлифование.
Магнитно-мягкие стали и сплавы отличаются легкой намагничиваемостью в относительно слабых магнитных полях. Их основными потребительскими свойствами являются высокая магнитная проницаемость, низкая коэрцитивная сила, малые потери на вихревые токи и при перемагничивании. Эти свойства обеспечивает гомогенная (чистый металл или твердый раствор) структура, чистая от примесей. Магнитно-мягкие материалы должны быть полностью рекристаллизованы для устранения внутренних напряжений, так как даже слабый наклеп существенно снижает магнитную проницаемость и повышает коэрцитивную силу. Магнитная проницаемость возрастает при микроструктуре из более крупных зерен.
По химическому составу промышленно применяемые магнитно-мягкие (электротехнические) стали и сплавы делятся на:
· низкоуглеродистые (0,05...0,005%С) с содержанием кремния 0,8...4,8%;
· сплавы железа с никелем.
В низкоуглеродистых сталях кремний, образуя с a-железом твердый раствор, увеличивает электрическое сопротивление и, следовательно, уменьшает потери на вихревые токи; кроме того. кремний повышает магнитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис вследствие вызываемого им роста зерна, графитизирующего действия и лучшего раскисления сталей. Однако кремний понижает индукцию в сильных магнитных полях и повышает хрупкость, особенно при его содержании 3...4%.
Железоникелевые сплавы с содержанием никеля 36...83%, называемые пермаллои, обладают наиболее высокими потребительскими свойствами. Для улучшения тех или иных характеристик в их состав вводят хром, молибден, медь и др. Величина их магнитной проницаемости превосходит аналогичные показатели для низкоуглеродистых сталей в 15-103 раз. Пермаллои - легко деформируемые сплавы. Однако деформация значительно ухудшает их первоначальные магнитные характеристики. Для восстановления свойств проводят термообработку по строго разработанному режиму: скорость нагрева (до 900...1000°С), выдержка и скорость охлаждения. Применяют их в аппаратуре, работающей в слабых частотных полях (телефон, радио).
Для электротехнических сталей (ГОСТ 21427-75) принята маркировка, основаная на кодировании. В обозначении марки используют четыре цифры, причем, их значения соответствуют кодам, содержащим следующую информацию:
· первый - структура материала (по наличию и степени текстуры) и вид прокатки (горячая или холодная деформация);
· второй - химический состав по содержанию кремния;
· третий - величины потерь тепловых и на гистерезис;
· четвертый - значение нормируемого потребительского свойства.
Электротехнические стали изготавливают в виде рулонов, листов и резаной ленты. Они предназначены для изготовления магнитопроводов постоянного и переменного тока, якорей и полюсов электротехнических машин, роторов, статоров, магнитных цепей трансформаторов и др. Парамагнитными сталями являются аустенитные стали 12Х18Н10Т, 17Х18Н9, 55Г9Н9ХЗ, 40Г14Н9Ф2 и др. Их химический состав базируется на системе Fe + Cr + Ni -rTi. Основными потребительскими свойствами являются немагнитность и высокая прочность. Необходимая прочность достигается при деформационном и дисперсионном упрочнении изделий. К недостаткам этих сталей и сплавов следует отнести низкий предел текучести (150...350 МПа), что ограничивает область применения только малонагруженньгми конструкциями.
Парамагнитные стали и сплавы применяют для изготовления немагнитных деталей конструкций в электротехнике, приборостроении, судостроении и специальных областях техники. Повышение износостойкости деталей, работающих в узлах трения достигается азотированием (стали 40Г14Н9Ф2 и др.)