Эволюция сердечно-сосудистой системы. 5 страница
Падение артериального давления может произойти вследствие уменьшения возврата крови к сердцу и, следовательно, снижения минутного объема крови, выбрасываемой сердцем. Это происходит при расширении капиллярного и венозного русла и скоплении в них крови. Повышение содержания СО2 в крови вызывает падение давления крови приблизительно на 20 мм рт. ст.
Физическая работа способствует увеличению артериального давления преимущественно за счет усиления работы сердца. Систематическая физическая тренировка приводит к устойчивому повышению артериального давления. Снижение температуры воздуха также сопровождается повышением артериального давления вследствие сужения сосудов кожи. Давление крови увеличивается с возрастом, что связано с потерей эластичности кровеносных сосудов.
Давление крови в венах, расположенных в грудной полости, почти равно атмосферному и зависит от фазы дыхания. В венах, лежащих за пределами грудной полости давление равно 3-10 мм рт. ст. У собак венозное давление в правой яремной вене составляет 0,1 мм рт. ст., а в левой - 0,5, в передней полой вене - 3, плечевой вене - 3,9, лице вой вене - 5,1, вене Сафена - 7,4 мм рт. ст. В больших венах оно на 2-6 мм рт. ст. ниже атмосферного давления (отрицательное давление).
Низкое давление в венах не может служить силой, обеспечивающей гемодинамику, поэтому здесь действуют другие факторы: присасывающее влияние грудной клетки, когда при вдохе расширяются легкие и одновременно крупные полые вены; сокращения мускулов, выжимающие кровь из вен; клапаны вен, способствующие однонаправленному кровотоку к сердцу. Воздействие дыхательных движений на венозное кровообращение называют дыхательным насосом.
Скорость кровотока. В различных сосудах скорость кровотока неодинакова, что связано с суммой диаметров всех вен и артерий. Линейная скорость кровотока - путь, проходимый частицей крови в 1 с, - воз растает от периферии к сердцу. У лошади время полного кругооборота крови составляет 40 с, у свиней и коз - 13, у кроликов - 8 с. Скорость кровотока в капиллярах примерно в 2-3 раза ниже, чем в артериях, что связано с суммарной величиной диаметров всех капилляров. Общий их диаметр в 600-800 раз больше, чем аорты, поэтому скорость движения крови в капиллярах значительно меньше - до 0,3-0,5 мм/с. Суммарная величина диаметров всех вен приближается к диаметру аорты, в результате этого скорость движения крови в венах вновь возрастает.
Наряду с линейной скоростью нужно учитывать еще и объемную скорость кровотока, вили величину кровотока. Она зависит от того, на сколько развита сосудистая сеть в данном органе, и от работы этого органа. Скорость кровотока можно определять с помощью веществ, непосредственно вводимых в кровь (цититон), или более точным ультразвуковым способом. Для этого к артерии на небольшом расстоянии прикладывают две маленькие металлические пластинки, которые преобразуют механические колебания в электрические, и наоборот - электрические в механические. Этим способом по показаниям прибора вычисляют скорость кровотока.
Скорость кровотока в периферических венах среднего калибра составляет 7-14 см/с, в полых венах несколько больше - 20 см/с. В артериях скорость кровотока больше, чем в венах, и составляет 30-44 см/с, в момент изгнания крови из сердца - 1, падая к концу диастолы до 0 см/с.
В организме сельскохозяйственных животных насчитывают много миллиардов капилляров. Длина каждого капилляра - 0,3-0,7 мм, диаметр - 6-8 мкм. Величина, форма и число капилляров в разных органах нёодинаковы, что связано с особенностями структуры и функции органов. Чем выше уровень обмена веществ в ткани, тем больше в ней капилляров. В сером веществе мозга сеть капилляров более густая, чем в белом.
Капилляры подразделяют на две группы: первые - магистральные - образуют кратчайший путь между артериолами и венулами, вторые представляют собой боковые ответвления от магистральных капилляров и образуют капиллярные сети. Имеются также капилляры, которые содержат только плазму - плазматические. Скорость кровотока в магистральных капиллярах выше, чем в капиллярной сети. Они выполняют важную роль в распределении крови в капиллярной сети, обеспечивая микроциркуляцию.
В покое в тканях кровь течет не по всем капиллярам. Приблизительно 1/3 их полностью (временно) выключена из кровообращения. Во время интенсивной работы органов, например при сокращении мышц, секреции желез, вследствие усиления обмена веществ, число функционирующих капилляров возрастает.
В некоторых участках кожи, почках, легких имеются непосредственные соединения артериол и вен. Такие соединения называют артериальными анастомозами. Они играют важную роль в регуляции капиллярного кровообращения. В обычных условиях артерио-венозные анастомозы закрыты и кровь течет через капиллярную сеть. При повышении или понижении внешней температуры артерио-венозные анастомозы открываются, в результате чего кровь не посредственно поступает из артериол в вену. Таким образом предотвращается перегревание или охлаждение организма.
Непрерывный кровоток в капиллярах обусловливает разницу в давлении в начале артериол и в конце их, при переходе в вены. На артериальном конце капилляров давление равно 30-35, а на венозном - 15 мм рт. ст. При расширении приводящих артерий давление в капиллярах повышается, а при их сужении - понижается.
Распределение циркулирующей крови и кровяные депо. В период физической нагрузки на ту или другую систему организма или при усилении физиологических функций органов происходит перераспределение крови. Оно возникает и при влиянии на организм высокой или низкой температуры воздуха. Например, в процессе пищеварения усиливается приток крови к внутренним органам и одновременно уменьшается кровообращение в мышцах и коже. При беременности усиливается плацентарное кровообращение. Физическая работа ведет к сужению сосудов пищеварительного тракта и к усилению притока крови к мышцам.
Значительная часть крови в организме (до 45-50 %) находится в так называемых кровяных депо - в печени, селезенке, легких, подкожных сосудистых сплетениях, где движение ее резко замедляется. Так, в печени она перемещается в 10 - 20 раз медленнее, чем в других сосудах, а в селезенке может быть почти полностью выключена из кровообращения. Резервуарная функция селезенки осуществляется с помощью специальной структуры сосудов, особенно венозных синусов, имеющих сфинктеры. При расслаблении последних кровь из них свободно переходит в вены. Кровь селезенки содержит больше эритроцитов и на 15-18 % больше гемоглобина, чем кровь других органов, поэтому поступление крови из селезенки способствует повышению транспорта кислорода.
Важную роль в качестве депо крови играет печень. В стенках крупных печеночных вен имеются сфинктеры, которые, сокращаясь, суживают устье вен, препятствует току крови от печени. В результате этого кровь задерживается в печени. Кровь в этом случае не выключается из циркуляции, как в селезенке, но ее движение замедляется.
Регуляция кровообращения. Механизм регуляции кровообращения связан с изменением диаметра кровеносных сосудов. Тонус кровеносных сосудов постоянно регулируется вегетативной нервной системой. Артерии и артериолы имеют сосудосуживающие нервные волокна - вазоконстрикторы, относящиеся к симпатической нервной системе, и сосудорасширяющие - вазодилятаторы, принадлежащие к парасимпатической нервной системе. Влияние симпатических нервов распространяется на сосуды внутренних органов, за исключением сердца.
Сосудосуживающее действие обусловлено тем, что по симпатическому нерву к кровеносным сосудам поступают нервные импульсы, которые поддерживают их стенки в состояние некоторого напряжения (тонуса). Если симпатический нерв перерезать, то поток импульсов прекратится и сосуды расширятся. У сельскохозяйственных животных расширение сосудов уха наблюдали в течение длительного времени (до двух лет), причем при болевых раздражениях оно усиливалось (А. Н. Голиков, 1961).
Расширение сосудов происходит при раздражении задних корешков спинного мозга, в которых проходят парасимпатические нервные волокна, однако вазодилятаторы, по-видимому, играют второстепенную роль в регуляции тонуса сосудов.
Сосудодвигательные центры расположены в продолговатом мозге на дне I мозгового желудочка. Центр имеет два отдела: прессорный и депрессорный. Раздражение первого отдела вызывает сужение артерий и подъем кровяного давления, раздражение второго - расширение артерий и соответственное падение давления. Сосудодвигательный центр находится в состоянии постоянного возбуждения, что обеспечивает тонус сосудистой системы в целом.
Функция сосудодвигательного центра осуществляется рефлекторным и гуморальным путем. Как уже упоминалось, артерии и артериолы находятся в состоянии определенного тонуса, обусловливающего степень их сужения. Этот артериальный тонус, в свою очередь, определяется тонусом сосудодвигательного центра, получающего импульсы с периферии от рецепторов, расположенных в различных органах и тканях, особенно в стенке дуги аорты, в сердце, сонных артериях и др. Важное значение имеют прессобарорецепторы, расположенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наружную (каротидный синус). Места расположения прессорецепторов, регулирующих кровообращение и давление крови, называют сосудистыми рефлексогенными зонами. Посредством специальных нервов они связаны с сосудодвигательным центром. Так, рецепторы аорты передают сигналы депрессорному нерву, проходящему в составе блуждающего нерва, рецепторы сонных артерий - синокаротидному нерву Геринга, вступающему в мозг в составе языкоглоточного нерва.
Раздражение депрессорного нерва вызывает рефлекторное повышение тонуса центра блуждающего нерва, одновременно снижается тонус сосудосуживающего центра, и кровяное давление падает, замедляется сердечная деятельность, расширяются сосуды внутренних органов.
Роль рефлексогенной зоны сонной артерии (каротидного синуса) в регуляции кровяного давления доказывает следующий опыт. Если пережать сонную артерию ниже места ее деления на наружную и внутреннюю, то произойдет быстрое ее кровенаполнение, вследствие чего возбудятся рецепторы и сигнал поступит в сосудодвигательный центр. Ответная реакция центра выразится понижением артериального давления. Это обусловлено тем, что импульсы из рецепторного поля сонной артерии вызывают рефлекторное понижение тонуса сосудосуживающего центра и повышение тонуса ядра блуждающего нерва, вследствие этого сердечная деятельность замедляется, сосуды расширяются и артериальное давление быстро падает (депрессорный эффект).
Обе указанные рефлексогенные зоны имеют важное значение в регуляции постоянства артериального давления. В нормальном состоянии они препятствуют его повышению. Это дало основание называть сосудистые рефлексогенные зоны «обуздывателями кровяного давления». Снижение артериального давления, например при кровопотере, слабости сердца, ведет к уменьшению раздражения прессорецепторов, поэтому ослабевает и «обуздывающее действие» сосудодвигательного центра. Наряду с сосудистыми барорецепторами имеются еще хеморецепторы, чувствительные к изменениям химического состава крови. Они расположены в восходящей части аорты (аортальное тельце) и в сонных артериях (каротидное тельце), а также в сосудах сердца, селезенки, надпочечников, почек. Эти рецепторы высокочувствительны к изменениям СО2 и кислорода в крови, окиси углерода, цианидам, никотину и другим веществам. Раздражение хеморецепторов передается сосудодвигательному центру, повышая его тонус. В результате этого быстро суживаются сосуды, повышается кровяное давление и возбуждается центр дыхания. Следовательно, раздражение хеморецепторов вызывает сосудистые рефлексы прессорного характера.
Сосудистые рефлексы могут возникать в результате воздействия разных раздражителей: электротока, холода и тепла, радиации и других физических факторов.
В функциональном отношении сосудодвигательный центр подчинен влиянию коры полушарий и других отделов головного мозга (сигмовидная извилина, премоторная зона). Это влияние можно видеть при эмоциональном возбуждении животных, сопровождающие повышением артериального давления. Образование условных рефлексов на изменение тонуса кровеносных сосудов подтверждает правильность выводов о влиянии коры полушарий мозга на функцию сосудодвигательного центра.
Некоторые биологически активные вещества (гормоны, медиаторы) обладают сосудосуживающим и сосудорасширяющим действием. Гормоны надпочечников адреналин и норадреналин, гормон задней доли гипофиза (АДГ) вызывают сужение артерий и артериол органов брюшной полости и легких. Однако сосуды мозга и сердца реагируют на эти вещества расширением, что способствует улучшению питания сердечной мышцы и тканей мозга. В слизистой оболочке кишечника, в мозге при распаде кровяных пластинок образуется серотонин, обладающий сосудосуживающим действием; он препятствует кровотечению в этих органах в случае повреждения ткани.
В почках вырабатывается особое сосудосуживающее вещество - ренин. Этот фермент самостоятельно не вызывает сужения, но, поступая в кровь, активирует глобулин плазмы - гипертензиноген, превращая его в активное сосудосуживающее вещество - гипертензин, который сужает сосуды, в результате чего давление крови повышается. При нормальном кровообращении в почках образуется сравнительно мало ренина, но при ограниченном притоке крови или падении кровяного давления вырабатывается значительное количество.
Способностью расширять сосуды обладают: гистамин, ацетилхолин, простагландины, аденозинтрифосфорная кислота, брадикинин и др. Брадикинин - очень активное сосудорасширяющее вещество, образующееся в тканях здорового организма. В состоянии физиологического покоя гормоны, расширяющие сосуды, циркулируют в крови в небольшом количестве, но, если необходимо снизить кровяное давление, например при повышенной физической нагрузке, они в большом количестве поступают в кровь, вызывая депрессорный эффект.
Нервная и гуморальная регуляции кровообращения тесно связаны. Например, адреналин при раздражении симпатической нервной системы прекращает действие вследствие выделения в кровь аминоксидазы, разрушающей фермент.
ОСОБЕННОСТИ КРОВООБРАЩЕНИЯ В НЕКОТОРЫХ ОРГАНАХ
Кровообращение в сердце. Кровообращение в венечных сосудах сердца происходит преимущественно во время диастолы. В момент систолического напряжения желудочков сердечная мышца сдавливает расположенные в ней сосуды, поэтому кровоток ослабевает. При экспериментальном сужении просвета венечных артерий путем наложения лигатуры резко ослабевает сердечная деятельность, нарушается ритм, возможна даже внезапная остановка сердца. Закупорка только одной венечной артерии тромбом ведет к серьезным нарушениям кровоснабжения и питания миокарда (инфаркт). Ток коронарного кровообращения может изменяться в зависимости от давления в аорте. Расширение артерий происходит при раздражении ветвей симпатического нерва, иннервирующих коронарные сосуды. Эмоции могут вызывать усиление или ослабление кровотока. Например, в эксперименте коронарное кровообращение у собаки значительно усиливалось при появлении кошки.
Кровообращение в мозге. Мозг получает кровь от артерий, радиально отходящих от мягкой оболочки мозга, в них кровь поступает от валлизиева круга. Между артериями и венами анастомозов нет, капилляры находятся в открытом состоянии. Оттекающая от мозга кровь поступает в вены, образующие синусы в твердой мозговой оболочке. Особенность кровообращения в мозге - непрерывность кровотока, обеспечивающая постоянный транспорт кислорода к нейронам. Последние погибают уже через 5-б мин при отсутствии поступления кислорода. Прекращениё притока крови к мозгу вызывает постепенное исчезновение биоэлектрических колебаний коры полушарий, что свидетельствует о прекращении движения ионов Na и К через клеточные мембраны.
Легочное кровообращение. Циркуляция крови в легких обеспечивается как малым (через легочную артерию), так и большим (бронхиальные артерии) кругом кровообращения, но газообмен между венозной кровью и кислородом, поступающим в легкие, осуществляется только за счет малого круга. Эритроциты проходят через легкие приблизительно за б с, находясь в легочных капиллярах, где происходит газообмен, в течение 0,7 с. У взрослых животных количество крови, проходящей по бронхиальным сосудам, по сравнению с объемом крови в легочных артериях, очень невелико и составляет 1-2 % минутного объема кровотока. Емкость сосудистого русла легких может уменьшаться и увеличиваться, вследствие эластичности легочной ткани значительно растягиваться. Поэтому кровенаполнение легких изменяется в пределах 10- 25 % к общему объему крови, легкие служат одним из кровяных депо организма.
Кровообращение в печени. Оно связано с процессами пищеварения и выполнения барьерной функции. Воротная вена печени распадается на сеть капилляров, которые, объединяясь и сливаясь, образуют печеночные вены, поэтому кровь, поступающая в печень через воротную вену, дважды проходит через капилляры. Такое строение капиллярной системы обеспечивает прохождение всей массы крови через печеночные клетки и освобождение ее от ядовитых продуктов обмена (индола, скатола, фенола). Если кровь из воротной вены направить непосредственно в полую вену (минуя печень), произойдет отравление организма со смертельным исходом. Такой опыт на собаках был впервые поставлен в 1877 г. Н. В. Экком.
Кровообращение в селезенке. На концевых веточках капилляров селезенки расположены кисточки, заканчивающиеся слепыми расширениями с отверстиями. Через эти отверстия кровь переходит в пульпу, а оттуда в синусы, имеющие отверстия в стенках. Селезенка, как губка, может впитывать большое количество крови. Кровь селезенки содержит больше эритроцитов и на 15 % больше гемоглобина, чем кровь, циркулирующая в сосудах, поэтому поступление крови из селезенки способствует повышению транспорта кислорода.
Последствия прекращения кровообращения. Нарушение функции, а затем и гибель ткани после прекращения кровообращения обусловлены прекращением притока кислорода и токсическим действием на ткани накапливающихся в них продуктов распада. Сократительная функция скелетных мышц исчезает через 20-30 мин после прекращения кровотока, но необратимые изменения в ткани начинаются значительно позднее - через 2 ч. Изолированное сердце можно оживить через 70-90 ч после смерти животного, если про пустить через сосуды или желудочки сердца теплый раствор Тироде или дефибринированную кровь.
Наиболее дифференцированные ткани сразу перестают функционировать при остром нарушении кровоснабжения (сетчатка глаза). Клетки мозговой коры при остановке кровообращения начинают гибнуть через 5-б мин. Если у собак через 12- 15 мин после прекращения кровообращения восстановить работу сердца, то функция спинного мозга восстанавливается, но их поведение становится таким же, как у собак с удаленной корой полушарий мозга.
ЛИМФА И ЛИМФООБРАЩЕНИЕ
В организме наряду с кровеносными сосудами имеется еще система лимфатических сосудов, по которым возвращается в кровь тканевая жидкость (рис. 16). Всосавшаяся в лимфатические сосуды тканевая жидкость называется лимфой. Важнейшая функция - возврат белков из тканевых пространств в кровь, участие в перераспределении воды в организме молокообразовании, пищеварении и обмене веществ.
Лимфатическая система. Она состоит из лимфатических сосудов, лимфатических узлов, грудного и шейного протоков. Грудной лимфатический проток - основной коллектор, доставляющий лимфу в венозное русло. На уровне 4-5-го грудных позвонков расположены боковые сети лимфатических сосудов, а его шейный отдел представлен несколькими стволами, сливающимися у крупного рогатого скота с наружной и внутренней яремными венами или с одной из них. Грудной отдел лимфатического протока имеет анастомозы с краниальными средостенными лимфатическими узлами (К. А. Петраков, 1983). Из межтканевых пространств лимфа собирается в лимфатические сосуды, затем проходит систему регионарных лимфатических узлов, поступает в грудной и шейный лимфатические протоки и наконец в полые вены, смешиваясь в правом. предсердии с венозной кровью.
В тканях находится разветвленная сеть замкнутых лимфатических капилляров, стенки которых обладают очень высокой проницаемостью, через них могут проходить коллоидные растворы и взвеси. Лимфатические капилляры объединяются в мелкие лимфатические сосуды. Стенки их подобны стенкам мелких вен, но только более тонкие.
Крупные лимфатические сосуды имеют клапаны и веточки симпатических нервов, раздражение последних вызывает сокращение сосудов. Лимфатические сосуды - это как бы дренажная система, удаляющая избыток тканевой, или интерстициальной, жидкости, находящейся в органах. Оттекающая от тканей лимфа поступает в биологические фильтры - лимфатические узлы, они задерживают и частично обезвреживают различные вещества и бактерии.
Чужеродные частицы поступают в лимфатическую, а не в кровеносную систему, потому что лимфатические капилляры имеют более проницаемые стенки. Фильтрация в лимфатических узлах осуществляется как механически, так и благодаря фагоцитарной активности их ретикулоэндотелиальных клеток. В легочных лимфатических сосудах, например у животных, живущих в больших городах, а также у лошадей, работающих на пыльных дорогах или в каменоломнях, обнаруживают большое количество частиц пыли («пыльные легкие»). Лимфатические узлы служат местом образования лимфоцитов, и лимфа, выходящая из узлов, обогащается данными форменными элементами.
Состав и свойства лимфы. Лимфа образуется из крови, поэтому ее химический состав близок к составу плазмы крови, но в разных отделах лимфатической системы он неодинаков (табл. 5).
Лимфа, взятая из лимфатических протоков во время голодания или после приема нежирной пищи, бесцветная, почти прозрачная, с плотностью около 1,015. В ней содержатся белки, небелковые азотистые вещества, глюкоза, соли, гормоны, ферменты, витамины и антитела. Состав белков такой же, как в плазме крови, но количество их меньше. Наиболее низкое содержание белков в лимфе, оттекающей от конечностей (1-2 %), кожи, мышц. Стенки лимфатических капилляров в них менее проницаемы. Наибольшим содержанием белков отличается лимфа печени (в среднем 5,3 %).
Вследствие меньшего содержания белков в лимфе вязкость и плотность ее ниже, чем плазмы крови. Лимфа имеет несколько более высокую концентрацию хлоридов и бикарбонатов, чем плазма крови. Реакция ее щелочная, рН немного выше, чем у плазмы крови.
Состав лимфы в органах зависит от их функционального состояния. Так, лимфа сосудов кишечника, а также лимфатического грудного протока после приема корма, богатого жиром, становится непрозрачной, молочно-белого цвета в связи с тем, что в ней содержится взвесь капелек жира, всосавшегося из кишечника. В лимфе обычно нет эритроцитов. Количество лимфоцитов после про хождения лимфатических узлов возрастает и в грудном протоке составляет около 5-20 тыс, мм. Кроме лимфоцитов, в лимфе имеется небольшое количество моноцитов и гранулоцитов. В лимфе нет кровяных пластинок, но она свертывается, так как содержит фибриноген и ряд факторов свертывания. После свертывания лимфы образуется рыхлый желтоватый сгусток и выступает жидкость, называемая сывороткой. В лимфе и крови обнаружены факторы гуморального иммунитета - комплемент, пропердин, лизоцим. Их количество и бактерицидная активность в лимфе достоверно ниже, чем в крови.
Количество лимфы, содержащейся в различных органах, зависит от их функции. Наиболее интенсивно она образуется в печени, что имеет большое значение для эвакуации образующихся белков. Например, на 1 кг живой массы приходится:
в печени - 2 1-36 мл,
в сердце - 5-18,
в селезенке - 3-12,
в мускулатуре конечностей - 2-3 мл.
По грудному протоку в кровь поступает около 2 мл лимфы на 1 кг живой массы в час. У коровы массой 500 кг в кровоток поступает около 24 л лимфы в сутки.
Роль лимфатических узлов. Каждый лимфатический узел контролирует определенный участок лимфатической системы. При попадании в организм микробов или трансплантации чужеродной ткани ближайший к этому месту лимфатический узел уже через несколько часов начинает увеличиваться в размерах, лимфоидные клетки его интенсивно делятся и образуют огромное количество малых лимфоцитов. Функция малых лимфоцитов - организация специфической самозащиты организма (иммунной реакции) от чужеродных агентов - антигенов. Малые лимфоциты образуются из стволовых клеток костного мозга. В лимфатических узлах различают долгоживущие тимусзависимые (Т-лимфоциты), которые прошли стадии развития в тимусе, и недолговечные В-лимфоциты, которые не были в тимусе, а прямо из костного мозга попали в лимфатические узлы.
Макрофаги первыми атакуют попавшие в организм антигены. Т-лимфоциты вырабатывают особое вещество (гуморальный фактор), которое уменьшает подвижность макрофагов, благодаря чему антигены концентрируются в лимфатических узлах. Там на них обрушивается вся мощь иммунной защиты. Один тип Т-лимфоцитов (клетки-убийцы) непосредственно уничтожает антигены, другой тип Т-лимфодитов (клетки памяти) после первого внедрения чужеродного агента сохраняет память о нем на всю жизнь и обеспечивают более активную реакцию на вторичное вторжение. Т-лимфоциты вместе с макрофагами «преподносят» антиген в таком виде, что это стимулирует В-лимфоциты к превращению сначала в большие лимфоциты, а затем в плазматические клетки, производящие антитела против данного антигена.
Таким образом, лимфатические узлы играют важную роль как в инфекционном, так и трансплантационном иммунитете.
Механизм образования и движения лимфы. В 50-х годах прошлого века К. Людвиг предложил фильтрационную теорию образования тканевой жидкости и лимфы. Согласно этой теории, лимфообразование происходит в результате разницы гидростатического давления в кровеносных капиллярах и тканевой жидкости. В дальнейшем данную теорию дополнил Э. Старлинг. Он отметил, что, кроме разницы гидростатического давления. В кровеносных капиллярах и тканях, важную роль играет также разница онкотического давления в крови и тканях.
Увеличение гидростатического давления крови в капиллярах способствует образованию лимфы, а повышение онкотического давления препятствует. фильтрация жидкости из крови происходит в начальном артериальном конце капилляра, а возвращается она в кровь в венозном кон е. Это обусловлено большей вели чиной кровяного давления в артериальном участке (30 мм рт. ст.) и меньшей в. венозном (15 мм рт. ст.) и некоторым повышением онкотического давления в венозном конце капилляра. При уменьшении в плазме крови онкотического давления начинается усиленный переход жидкости из крови в ткани. Повышение осмотического давления тканевой жидкости и лимфы также усиливает образование лимфы. Это отмечают в тех случаях, когда в этих жидкостях накапливается большое количество низкомолекулярных конечных продуктов обмена веществ, например при усиленной мышечной работе.
Стенка капилляров обладает избирательной способностью к различным веществам. Повышение лимфообразования происходит под действием некоторых веществ, получивших название лимфогенных (пептоны, гистамин, экстракты из пиявок).
Лимфатические капилляры высокопроницаемы для многих клеток и веществ. Так, эритроциты, лимфоциты, хиломикроны, макромолекулы легко проникают в лимфатические капилляры, поэтому лимфа выполняет не только транспортные, но и защитные функции.
В механизме перемещения лимфы важную роль играют ритмические сокращения стенок некоторых лимфатических сосудов. Особенно четко способность к постоянной ритмической активности выражена у самого крупного лимфатического сосуда грудного протока. Благодаря сильным ритмическим сокращениям стенок грудного протока облегчается поступление лимфы в этот проток и ее перекачивание небольшими порция ми в венозную систему. Поэтому грудной лимфатический проток называют вторым сердцем - лимфатическим. Объем лимфы, поступающей через грудной проток в кровь за сутки приблизительно равен объему всей плазмы.
Движению лимфы по организму, как и венозной крови, способствуют сокращения мускулов, сгибание и разгибание конечностей, массаж тела.
В движении лимфы большое значение имеет отрицательное давление в плевральной полости. Во время вдоха оно способствует расширению грудного лимфатического протока и присасыванию в него лимфы из периферических лимфатических сосудов, особенно из дистальных звеньев конечностей. Скорость движения лимфы значительно меньше, чем крови. В шейном лимфатическом протоке лошади за 1 мин проходит 240- 300 мм лимфы. Давление лимфы в лимфатических сосудах составляет 8-10 мм водн. ст., а у места впадения грудного протока в полые вены - 4 мм водн, ст. Эта разница давлении крови и лимфы обеспечивает ее движение по системе лимфатических сосудов и капилляров.
В сложной системе регуляции лимфообрагцения и лимфообразования большую роль играют циркадные ритмы активности гипоталамо-гипофизарно-надпочечниковой системы, определяющие уровень циркулирующих биогенных аминов. Этот фактор рассматривают как регулятор метаболизма белков, липидов и углеводов, ответственных за транспорт всех биологических жидкостей (Р. С. Орлов, 1987). Движение лимфы осуществляется за счет работы лимфангиомов, представляющих со бой цепочки лимфатических сосудов и подчиненных адренергическому возбуждающему влиянию.
Для выяснения состава лимфы и механизма лимфообразования применяется методика получения лимфы из грудного протока крупного рогатого скота (Б. З. Иткин, 1967).