Дефекты кристаллической решетки
Выделяют несколько групп дефектов:
· Точечные дефекты
· Линейные дефекты
· Двухмерные дефекты
· Объемные дефекты
К точечными дефектам относятся дефекты связанные с единичными атомами. Выделяют: вакансии, атомы замещения и атомы внедрения.
На рисунке под буквой «а» изображена структура идеального кристалла. На рисунке «б» можете видеть отсутствие атома в одном из узлов, в связи с чем наблюдаются изменение положений ближайших атомов, такой вид дефекта называет вакансия. На рисунке «в» в узле атом одного элемента замещен атомом другого, такой вид деформации называется атомами замещения. И на последнем рисунке изображен атом внедрения, который устанавливается между узлами и тем самым создает сдвиг соседних атомов.
Линейные дефекты по-другому называют одномерными. К линейным относятся дефекты длинны которых в одном из направлений значительно больше чем период решетки, а по остальным направлениям величина дефекта соизмерима с периодом.
По аналогии с линейными дефектами двумерными называют дефекты у который в двух измерениях величина дефекта много больше чем период решетки а в одном направлении сравнимо с ним. К дефектам этого типа можно отнести зоны двойникования, границы зерен и другие.
Объемные или трехмерные дефекты это дефекты, которые имеют величину гораздо больше периода решетки во всех направлениях. К этому типу можно отнести любые модификации трех предыдущих которые находятся близ друг друга тем самым образовывая один большой дефект.
Дислокация это дефект который образовывается из-за отсутствующей полуплоскости. На рисунке изображено плоское представление дислокация, чтобы понять почему этот дефект называется линейным мысленно продолжите этот рисунок за экран. В месте где обрывается одна из полуплоскостей образуется «туннель» это и есть дислокация.
3. Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров.
Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии.
При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.
Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым.
Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.
Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.
Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации.
При равновесной температуре кристаллизации ТS число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.
Если жидкость переохладить до температуры, соответствующей т.а, то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая).
При переохлаждении до температуры соответствующей т.в – мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая).
Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых.
4. Мелкозернистую структуру можно получить в результате модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы,
По механизму воздействия различают:
1. Вещества не растворяющиеся в жидком металле – выступают в качестве дополнительных центров кристаллизации.
Поверхностно - активные вещества, которые растворяются в металле, и, осаждаясь на поверхности растущих кристаллов, препятствуют их росту.
Слиток состоит из трех зон:
1. мелкокристаллическая корковая зона;
2. зона столбчатых кристаллов;
3. внутренняя зона крупных равноосных кристаллов.
Кристаллизация корковой зоны идет в условиях максимального переохлаждения. Скорость кристаллизации определяется большим числом центров кристаллизации. Образуется мелкозернистая структура.
Жидкий металл под корковой зоной находится в условиях меньшего переохлаждения. Число центров ограничено и процесс кристаллизации реализуется за счет их интенсивного роста до большого размера.
Рост кристаллов во второй зоне имеет направленный характер. Они растут перпендикулярно стенкам изложницы, образуются древовидные кристаллы – дендриты
Ликвация–неоднородность химического состава сплавов, возникающая при их кристаллизации.
5.Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Система – группа тел выделяемых для наблюдения и изучения.
В металловедении системами являются металлы и металлические сплавы. Чистый металл является простой однокомпонентной системой, сплав – сложной системой, состоящей из двух и более компонентов.
Компоненты – вещества, образующие систему. В качестве компонентов выступают чистые вещества и химические соединения, если они не диссоциируют на составные части в исследуемом интервале температур.
Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются.
Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.
Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше чем между разнородными.
Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.
Особенности этих сплавов:
1. Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/
2. Образуется специфмческая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 4.2)
3. Ярко выраженные индивидуальные свойства
4. Постоянство температуры кристаллизации, как у чистых компонентов
Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами.
Характерной особенностью твердых растворов является:наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.
6. Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы. Построение диаграмм состояния наиболее часто осуществляется при помощи термического анализа. В результате получают серию кривых охлаждения, на которых при температурах фазовых превращений наблюдаются точки перегиба и температурные остановки. Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации – точками солидус. По кривым охлаждения строят диаграмму состава в координатах: по оси абсцисс –концентрация компонентов, по оси ординат – температура. Шкала концентраций показывает содержание компонента В. Основными линиями являются линии ликвидус и солидус , а также линии соответствующие фазовым превращениям в твердом состояни. По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава
Существует математическая связь между числом компонентов , числом фаз и вариантностью системы. Это правило фаз или закон Гиббса
Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится
где: С – число степеней свободы, К – число компонентов, Ф – число фаз, 1 – учитывает возможность изменения температуры.
7. Диаграмма состояния и кривые охлаждения типичных сплавов системы представлены на рис.5.5.
1. Количество компонентов: К = 2 (компоненты А и В);
2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов (раствор компонента В в компоненте А) и ( раствор компонента А в компоненте В));
3. Основные линии диаграммы:
линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;
линия солидус аdcfb, состоит из трех участков;
dm – линия предельной концентрации компонента В в компоненте А;
fn – линия предельной концентрации компонента А в компоненте В.
4. Типовые сплавы системы.
При концентрации компонентов, не превышающей предельных значений (на участках Аm и nВ), сплавы кристаллизуются аналогично сплавам твердым растворам с неограниченной растворимостью, см кривую охлаждения сплава I на рис. 5.5 б. При концентрации компонентов, превышающей предельные значения (на участке dcf), сплавы кристаллизуются аналогично сплавам механическим смесям, см. кривую охлаждения сплава II на рис. 5.5 б.
Рис. 5.5 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б)
Сплав с концентрацией компонентов, соответствующей точке с, является эвтектическим сплавом. Сплав состоит из мелкодисперсных кристаллов твердых растворов и , эвт. (кр. тв. р-ра + кр. тв. р-ра )
Кристаллы компонентов в чистом виде ни в одном из сплавов не присутствуют.
8. Так как вид диаграммы, также как и свойства сплава, зависит от того, какие соединения или какие фазы образовали компоненты сплава, то между ними должна существовать определенная связь. Эта зависимость установлена Курнаковым
1. При образовании механических смесей свойства изменяются по линейному закону. Значения характеристик свойств сплава находятся в интервале между характеристиками чистых компонентов.
2. При образовании твердых растворов с неограниченной растворимостью свойства сплавов изменяются по криволинейной зависимости, причем некоторые свойства, например, электросопротивление, могут значительно отличаться от свойств компонентов.
3. При образовании твердых растворов с ограниченной растворимостью свойства в интервале концентраций, отвечающих однофазным твердым растворам, изменяются по криволинейному закону, а в двухфазной области – по линейному закону. Причем крайние точки на прямой являются свойствами чистых фаз, предельно насыщенных твердых растворов, образующих данную смесь.
4. При образовании химических соединений концентрация химического соединения отвечает максимуму на кривой. Эта точка перелома, соответствующая химическому соединению, называется сингулярной точкой.
9. По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы. В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным — состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).Твёрдый раствор является основой сплава (матричная фаза). Фазовый составгетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений (в том числе карбиды, нитриды, интерметаллиды) и кристаллиты простых веществ.
Сплавы химические соединения образуются элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.
Особенности этих сплавов:
1.Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/ 2.Образуется специфмческая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов 3.Ярко выраженные индивидуальные свойства 4.Постоянство температуры кристаллизации, как у чистых компонентов
10. Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.
Диаграмма состояния железо – углерод дает основное представление о строении железоуглеродистых сплавов – сталей и чугунов. Начало изучению диаграммы железо – углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода. Диаграмма железо – углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – . Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до , то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего углерода.
Железо- пластичный металл серебристо-белого цвета с невысокой твердостью (НВ 80). Температура плавления — 1539°С, плотность 7,83 г/см3. Имеет полиморфные модификации С углеродом железо образует химическое соединение и твердые растворы.
Ферритом- называется твердый раствор углерода в а- железе. Содержание углерода в феррите очень невелико — максимальное 0,02% при температуре 727°С. Благодаря столь малому содержанию углерода свойства феррита совпадают со свойствами железа (низкая твердость и высокая пластичность). Твердый раствор углерода в высокотемпературной модификации Feα часто называют δ- ферритом или высокотемпературным ферритом.
Аустенит- это твердый раствор углерода в γ- железе. Максимальное содержание углерода в аустените составляет 2,14% (при температуре 1147°С). Имеет твердость НВ 220.
Цементит- это химическое соединение железа с углеродом (карбид железа) Fe3C. В нем содержится 6,67 % углерода. Имеет сложную ромбическую кристаллическую решетку. Характеризуется очень высокой твердостью, крайне низкой пластичностью и хрупкостью.
Перлит- это механическая смесь феррита с цементитом. Содержит 0,8% углерода, образуется из аустенита при температуре 727°С. Имеет пластинчатое строение, т.е. его зерна состоят из чередующихся пластинок феррита и цементита. Перлит является эвтектоидом.
Эвтектоид- это механическая смесь двух фаз, образующаяся из твердого раствора (а не из жидкого сплава, как эвтектика).
Ледебурит- представляет собой эвтектическую смесь аустенита с цементитом. Содержит 4,3% углерода, образуется из жидкого сплава при температуре 1147°С. При температуре 727°С аустенит, входящий в состав ледебурита превращается в перлит и ниже этой температуры ледебурит представляет собой механическую смесь перлита с цементитом.
11.Сталь — сплав железа с углеродом .Содержание углерода в стали от 0,1 до 2,14 % На данный момент существуют стали с большим содержанием углерода, такие как: zdp-189 ~ 3.0%, cpm rex 121 ~ 3,4%. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Классификация углеродистых сталей
По структуре углеродистые стали подразделяют на:
- доэвтектоидные (содержат менее 0,8% С)
- эвтектоидные (0,8% С)
- заэвтектоидные (С более 0,8%)
По способу получения углеродистые стали разделяют на:
- кислородно-конвертерные
- мартеновские
- электростали
По качеству (качество определяется содержанием вредных примесей в стали) углеродистые стали разделяют на:
- стали обыкновенного качества
- качественные стали
По назначению углеродистые стали разделяют на:
- конструкционные
- инструментальные
Маркировка углеродистых сталей
Маркировка углеродистых сталей зависит от их качества и назначения.
Стали обыкновенного качества имеют 3 группы поставки: А, Б, В.
Стали группы А поставляются с гарантированными механическими свойствами, химический состав не регламентируют.
Стали группы Б поставляются с гарантированным механическим составом, механические свойства не гарантируются.
Стали группы В поставляются с гарантированными химическим составом и механическими свойствами.
Все эти стали обыкновенного качества (ГОСТ 380-71) маркируются буквами Ст, после которых ставится цифра от 0 до 6.
Впереди марки – буква, указывающая группу поставки (для стали группы А – не ставится). В конце марки указывается степень раскисления: пс, кп (для спокойных – не указывают).
Ст3кп – углеродистая сталь обыкновенного качества, группы поставки А, с номером 3, кипящая. ВСт4пс – углеродистая сталь обыкновенного качества, группы поставки В, с номером 4, полуспокойная. Для сталей группы поставки А номер характеризует механические свойства (выше номер – выше прочность). У сталей группы Б с возрастанием номера возрастает содержание углерода. У сталей группы В механические свойства такие же как у стали группы А, а химический состав как у стали группы Б аналогичного номера.
О механических свойствах и химическом составе информацию получают в сопроводительных документах. Качественные конструкционные углеродистые стали (ГОСТ 1050-74) маркируют цифрами 08, 10, 15, 20, 25… до 85. Цифры означают среднее содержание углерода в сотых долях процента.
Если сталь содержит повышенное количество марганца (0,8-1,2%), то после цифр ставится буква Г. В конце марки указывают степень раскисления (кп или пс). Сталь 40 – качественная конструкционная углеродистая сталь с содержанием углерода 0,4 % , спокойная. Сталь 65Гпс – качественная конструкционная углеродистая сталь с содержанием углерода 0,65%, более 0,8% марганца, полуспокойная. Инструментальные углеродистые стали (гост 1435-74) тоже качественные. Они маркируются большой буквой У и цифрами, которые означают содержание углерода в десятых долях процента. Эти стали всегда качественные. Однако, если сталь имеет повышенное качество, то в конце марки ставится буква А. Обычно в качестве инструментальной стали используют стали с повышенным содержанием углерода (0,75-1,3%). Они отличаются высокой твердостью и прочностью. Из них изготавливают сверла, метчики, развертки, а также пуансоны и матрицы штампов для холодной штамповки. Недостатком углеродистых инструментальных сталей является их низкая теплостойкость – при нагреве выше 200 ?С их твердость снижается, поэтому в этих случаях целесообразно применять легированные инструментальные стали.
12.
Чугун отличается от стали: по составу – более высокое содержание углерода и примесей; по технологическим свойствам – более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.
В зависимости от состояния углерода в чугуне различают:
Чугун серый — сплав железа с углеродом, в котором присутствует графит в виде хлопьевидных, пластинчатых или волокнистых включений. Отдельной разновидностью (группой марок) серого чугуна является высокопрочный чугунс графитом глобулярной формы, что достигается путём его модифицирования магнием (Mg), церием (Ce) или другими элементами. В зависимости от скорости дальнейшего охлаждения после затвердевания (а значит и от размера отливки) чугун может иметь ферритную, феррито-перлитную и чисто перлитнуюметаллическую основу. С ростом скорости охлаждения возрастает доля перлита, а следовательно и прочность чугуна, но падает его пластичность. Для каждой области применения выбирают марку чугуна с оптимальным для этого случая сочетанием свойств. Маркируется серый чугун буквами СЧ, после которых указывают гарантированное значение предела прочности в кг/мм², например СЧ30. Высокопрочные чугуны маркируются буквам ВЧ, после которых указывают прочность и, через тире, относительное удлинение в %, например ВЧ60-2. Серый чугун характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Высокая хрупкость, свойственная серым чугунам вследствие наличия в их структуре графита, делает невозможным их применение для деталей, работающих в основном на растяжение или на изгиб; чугуны используются лишь при работе на сжатие. Кроме углерода, серый чугун всегда содержит другие элементы, в первую очередь кремний, способствующий образованию графита. В большинстве марок серого чугуна содержание углерода от 2,9 до 3,7%.
Ко́вкий чугу́н — условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то есть процесс графитизации, и поэтому такой отжиг называют графитизирующим. Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированы друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжиг) графит в ковком чугуне часто называют углеродом отжига. По составу белый чугун, подвергающийся отжигу на ковкий чугун, является доэвтектическим и имеет структуру ледебурит + цементит (вторичный) + перлит. Для получения структуры феррит + углерод отжига в процессе отжига должен быть разложен цементит ледебурита, вторичный цементит и цементит эвтектоидный, то есть входящий в перлит. Разложение цементита ледебурита и цементита вторичного (частично) происходит на первой стадии графитизации, которую проводят при температуре выше критической (950—1000 °С); разложение эвтектоидного цементита происходит на второй стадии графитизации, которую проводят путём выдержки при температуре ниже критической (740—720 °C), или при медленном охлаждении в интервале критических температур (760—720 °C).
Высокопрочный чугун — чугун, имеющий графитные включения сфероидальной формы. Графит сфероидальной формы имеет меньшее отношение его поверхности к объёму, что определяет наибольшую сплошность металлической основы, а следовательно, и прочность чугуна. Структура металлической основы чугунов с шаровидным (сфероидальным) графитом такая же, как и в обычном сером чугуне, то есть, в зависимости от химического состава чугуна, скорости охлаждения (толщины стенки отливки) могут быть получены чугуны со следующей структурой:
· феррит + шаровидный графит (ферритный высокопрочный чугун);
· феррит + перлит + шаровидный графит (феррито-перлитный высокопрочный чугун);
· перлит + шаровидный графит (перлитный высокопрочный чугун). В чугуне с шаровидной формой графита исключается возможность распространения трещин, так как графит имеет форму сферы, и такой чугун имеет значительно более высокую прочность при растяжении и изгибе, чем серый чугун
13.Наклёп (нагартовка) — упрочнение металлов и сплавов вследствие изменения их структуры и фазового состава в процессе пластической деформации при температуре ниже температуры рекристаллизации. Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.
Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.
Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость. Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла. Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.