Выпрямляющее действие диода.
Контакт двух полупроводников обладает выпрямляющим действием. Это значит, что сопротивление такого контакта зависит от направления проходящего через него тока. В одном направлении (запорном) оно велико, в противоположном (пропускном) - мало. Особенно резко выпрямляющее действие выражено на границе дырочного (р) и электронного (n) полупроводников, когда работа выхода электрона из электронного полупроводника меньше, чем из дырочного. О таком контакте говорят, как об электронно-дырочном (р-n) контакте или переходе. Для получения хороших p-n переходов в пластинку чистого полупроводника вводят две примеси - донорную и акцепторную. Первая сообщает полупроводнику электронную, а вторая - дырочную проводимость. Например, если пластинка сделана из германия или кремния, то в качестве донора можно взять элемент пятой группы периодической системы (фосфор, мышьяк и пр.), а в качестве акцептора - элемент третьей группы (бор, индий и пр.). В результате в одной половине пластинки возникает электронная, а в другой - дырочная проводимость, а между обеими половинками - тонкий переходный слой. Это и есть p-n переход. Допустим, что контакта между двумя полупроводниками из одного материала, но с разными типами примеси нет. Тогда границы энергетических зон (валентной зоны и зоны проводимости) в обоих полупроводниках совпадают. Примесные же уровни в запрещенной зоне расположены в электронном полупроводнике вблизи зоны проводимости, а в дырочном полупроводнике - вблизи валентной зоны. Благодаря этому средняя энергия электрона проводимости и уровень химического потенциала (mn) в первом полупроводнике будут выше, а работа выхода - меньше, чем во втором (mp) (рис. 1). Приведем полупроводники в контакт друг с другом. Электроны будут переходить из первого полупроводника во второй. Электронный полупроводник будет заряжаться положительно, а дырочный - отрицательно. В тонком слое между ними появится контактное электрическое поле, направленное от электронного полупроводника к дырочному. В результате этого энергетические уровни электронного полупроводника начнут опускаться, а дырочного - подниматься.
Контактное электрическое поле Eк будет тормозить переход электронов в дырочный полупроводник. Процесс перехода прекратится, когда уровни химического потенциала в обоих полупроводниках сделаются одинаковыми. Переходный слой становится сильно обедненным основными носителями тока (электронами в n-полупроводнике и дырками в р-полупроводнике). Его сопротивление оказывается во много раз больше суммарного сопротивления обоих полупроводников. На рис. 2 приведена схема энергетических уровней в случае контакта полупроводников с разным типом примесей в отсутствии внешнего поля.
Смещение зон при контакте p- и n-полупроводников
Присоединим теперь к этому кристаллу стороннюю э.д.с. так, как это показано на рис. 3: минус к р-кристаллу, и плюс к n-кристаллу.
Запирающее подключение перехода
Такое подключение будем называть «обратным». Внешнее электрическое поле Е при этом направлено от электронного полупроводника к дырочному, т.е. одинаково с контактным полем Еc. Такое поле усиливает контактное поле Еc и тем самым еще больше уменьшает концентрацию основных носителей (дырок и электронов проводимости) в переходном слое. Сопротивление последнего еще больше возрастет. Величина тока Is через полупроводник в случае подачи на него напряжения очень мала, так как определяется неосновными носителями тока, концентрация которых незначительна.
Переменим теперь полюсы внешней э.д.с. (рис. 4).
Пропускающее подключение перехода
Такое подключение будем называть «прямым». В этом случае внешнее поле Е будет направлено против контактного поля Еc. Тогда электроны проводимости и дырки будут беспрепятственно проникать в переходный слой, и сопротивление последнего практически исчезнет. Величина тока через контакт будет определяться уже основными носителями тока, концентрация которых велика, и ток через р-n-переход будет значителен.
Если ток переменный, то в зависимости от его направления и силы сопротивление контакта становится пульсирующим, изменяясь от нуля практически до бесконечности. В соответствии с этим ток через контакт будет проходить только тогда, когда внешнее поле Е направлено от дырочного полупроводника к электронному (рис. 4).
На этом принципе работают полупроводниковые выпрямители.