Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження

Серед ендогенних рудогенерируючих систем найважливіше значення мають магматичні і сполучені з ними магматогенно-гідротермальні. Головні завдання їх геохімічного моделювання можуть бути сформульовані таким чином [15, 20]: 1) визначення провідного механізму формування магматичних серій; 2) встановлення поведінки петрогенних і мікроелементів у процесі магматичної еволюції; 3) оцінка фізико-хімічних, у першу чергу температурних умов функціювання магматичних систем; 4) оцінка їх спроможності до генерації рудоносних флюїдів та формування гідротермально-метасоматичних рудних родовищ; 5) незалежна контрольна перевірка результатів моделювання.

Принципи вирішення завдань 1 і 2 розроблені (Neumann et al., 1954; Рябчиков, 1965, 1975; Gast, 1968; Shaw, 1970; Greenland, 1970; Allegre & Minster, 1978 та ін.) і широко використовуються. Однак вони не забезпечують вирішення завдань 3, 4 і 5. Для їх коректного вирішення автором запропоноване [5, 15, 20, 21, 30, 35 та ін.] комплексне використання розподілу мікроелементів у серіях магматичних порід, експериментальних даних щодо розчинності у силікатних розплавах НАМ [апатиту (Ap), циркону (Zrn) і монациту (Mnz)] та даних про розподіл рідкісних елементів (перед за все Y) в їх асоціаціях.

Принципи і процедура реалізації запропонованого підходу розглянуті на прикладі гранітоїдної серії (рапаківі, граніт-порфіри, жильні граніти) докембрійського (1,7–1,8 млрд. років) Коростенського плутону (КП) анортозит-рапаківігранітної формації і рудоносних (Li, Be, Nb, Ta, Zr, W, Sn, Mo, Zn, Pb, Cu, Bi, Cd) метасоматитів Сущано-Пержанської зони (СПЗ), що просторово асоціюють з магматитами КП у межах північно-західної частини УЩ. Побудована геохімічна модель [15, 20, 21, 30 та ін.] ґрунтується на створених аналітичних банках даних “породного” і “мінерального” рівнів і може бути резюмована в такий спосіб:

1. Розподіл мікроелементів у петротипах гранітоїдної серії КП співставлений (рис. 6) з відомими (Neumann et al., 1954; Рябчиков, 1965, 1975; Shaw, 1970; Greenland, 1970; Allegre & Minster, 1978 тощо) моделями їх поведінки у вміщуючих розплав системах — фракційної кристалізації (1), рівноважної кристалізації/плавлення (2), плавлення з безперервним вилученням розплаву та його накопиченням в резервуарі (3), фракційного часткового плавлення (4). При цьому використані відповідні рівняння, спрощені для випадку постійних значень комбінованого коефіцієнта розподілу ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — концентрація елемента в рідкій і твердій фазах системи відповідно). Для застосованих індикаторних елементів (Rb і Sr) з урахуванням емпіричних оцінок (Рябчиков, 1975; Антипин и др., 1984 та ін.) було прийнято:

DRb= 0,5 і DSr= 2,0, DRb= 0,1 і DSr= 2,0, а такожDRb= 0,1 і DSr= 0,1 для умов кристалізації гранітоїдних магм, часткового плавлення на рівні нижньої континентальної кори і верхньої мантії, відповідно. Головним фактором магматичної еволюції був визнаний механізм фракційної кристалізації (1), якому відповідає рівняння Релея ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — концентрація елемента у вихідному розплаві, Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — масова частка рідкої фази в системі). Такий вибір підтверджений і відомим тестом (Рябчиков, 1975) —зворотною лінійною кореляцією lnCSr (lnCBa) — lnCRb , яка випливає з цього рівняння

Рис. 6. Співставлення даних з геохімії Sr і Rb у гранітоїдах КП, інших комплексів УЩ (Щербаков и др., 1984; Есипчук, 1988) і типових диференційованих комплексів інших регіонів (Богатиков и др., 1987) (сірі кружки і квадрати відповідно) з модельними трендами кристалізації і часткового плавлення. Rbmin , Srmin і Srmax , Rbmax —мінімальні і максимальні концентрації Rb і Sr у ряді породних відмін кожного комплексу. Номери трендів відповідають номерам моделей.

2. Модельні значення Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (масова частка залишкового розплаву в глибинній магматичній камері) для кожного різновиду гранітоїдів (його порції) були розраховані як Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru виходячи з концентрацій у петротипах Rb (CRb) — несумісного елемента з витриманим значенням DRb = 0,5 для гранітоїдних систем (Рябчиков, 1975; Антипин и др., 1984 та ін.; наші дані [15]). За концентрацію Rb у вихідному розплаві ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) прийнята його мінімальна концентрація (169 ppm) у дослідженій серії порід. Зміна концентрацій мікро- і петрогенних (головних) елементів (i) у залишковому розплаві ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) у залежності від Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru апроксимована, відповідно, рівняннями релеевського ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) (рис. 7 та 9, б) і поліноміального типів, причому з перших випливають оцінки Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru й ефективних значень Di. Ця система рівнянь являє собою ідеалізовану модель поведінки елементів у магматичній еволюції, яка і використовувалася надалі.

3. Отримані дані демонструють (рис. 7) зручний для моделювання і досить типовий випадок, коли вихідний розплав був споконвічно насичений щодо головних НАМ — циркону (Zrn) і апатиту (Ap). Насичення щодо монациту (Mnz) і ксенотиму (Xnt) досягалося на наступних етапах його кристалізації, що приводило до послідовної зміни в складі кристалізата ліквідусних парагенезисів Zrn+Ap, Zrn+Mnz, Zrn+Xnt у ході магматичної еволюції. Тому для відповідаючого парагенезису Zrn+Ap діапазону Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru модельна температура (Tmodel) розплаву в момент екстракції його порцій (петротипів) з магматичної камери була розрахована як середнє з оцінок за експериментально отриманими (Watson & Harrison, 1983; Harrison & Watson, 1984) рівняннями розчинності Ap і Zrn: Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru та Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ; Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ; Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru —масові концентрації Zr і P у Zrn, Ap і розплаві відповідно; Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (катіонне відношення в розплаві); Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — масова частка Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru в розплаві; Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — абсолютна температура (K). У діапазоні парагенезисів Zrn+Mnz і Zrn+Xnt застосовувалося лише друге з них, а оцінки за розчинністю Ap екстраполювалися. В усіх випадках у розрахунках використовувалися модельні параметри складу залишкового розплаву.

4. Оцінка вмісту води в залишковому розплаві ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) для значення f = 0,185 (заміна Ap на Mnz у парагенезисі з Zrn) отримана підстановкою відповідних модельних оцінок його Tmodel , CLREE і валового складу в рівняння розчинності Mnz (Montel, 1993), яка контролюється не тільки складом та температурою розплаву, але й Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru : Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — сума концентрацій у розплаві LREE (La – Gd за винятком Eu), нормованих на їхні атомні маси, Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (катіонне відношення в розплаві), Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — вміст води (мас. %) у розплаві ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ), Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — абсолютна температура (K). Така оцінка, яка в значній мірі базується на Tmodel , дозволяє істотно розвинути модель магматичної системи, у тому числі одержати оцінку Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru = 2,36 мас. %, що відповідає (Рябчиков, 1975) виходу первинного розплаву на ліквідус ( f = 1) за Tmodel = 900 o і Ptotal ~6,3 кбар [глибина ~18-20 км, що добре узгоджується з геофізичними даними (Starostenko et al., 2002) щодо залягання покрівлі габроїдного “діапіру” — можливого ініціатора формування первинного розплаву], простежити зростання Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru у магматичній еволюції аж до досягнення насичення залишкового розплаву відносно H2O з наступним відокремленням рудоносного водного флюїду (рис. 9), тобто до переходу магматичної системи в магматогенно-гідротермальну стадію розвитку.

5. Для оцінки модельних значень коефіцієнта розподілу флюїд/розплав ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru —концентрації елемента у флюїді і розплаві відповідно) тих мікроелементів, інверсії в поведінці яких збігаються з одержаною вище оцінкою (f = 0,165) досягнення розплавом насичення відносно H2O (рис. 9) та пояснюються їх інтенсивною екстракцією флюїдом, що відокремлювався, використовувався запропонований нами [21] вираз:

Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ,

де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — концентрації елемента в розплаві, розраховані за модельними рівняннями, що описують їх зміну до і після інверсії відповідно, а Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — відповідні їм значення комбінованого коефіцієнта розподілу. Очевидно, що для елементів з монотонною поведінкою ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru = Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru . Повна процедура [21] дозволяє одержати також оцінку масового співвідношення флюїдної і рідкої (розплав) складових системи і масової частки в ній флюїдної фази. Подальші розрахунки [21] дають оцінку складу флюїду (рис. 10, а) у відношенні мікроелементів ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ) [для петрогенних елементів використані експериментально визначені значення Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (Чевычелов, Эпельбаум, 1985)], а потім і модельних граничних композицій найбільш високо- і низькотемпературних продуктів його взаємодії з вміщуючими породами: Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru та Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru відповідно, де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — коефіцієнт розподілу порода/флюїд [прийняті емпіричні оцінки (Антипин и др., 1984)], Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — сума оцінених з моделі масових концентрацій усіх катіонів флюїду. Зіставлення таких модельних оцінок зі складом реальних метасоматитів СПЗ [21] демонструє їх відповідність (рис. 10, б), що підтверджує гіпотезу про генетичний зв'язок цих рудоносних утворень з магматичною системою, що формувала гранітоїдну серію КП.

Рис. 10. Результати геохімічного моделювання магматогенно-гідротермальної системи гранітоїдів КП: а — зміна модельних концентрацій Zn+Pb+Nb у флюїді (CF ) за період його відокремлення від розплаву; б — модельний склад продуктів функціювання магматогенно-гидротермальної системи (M) і його співставлення зі складом реальних рудоносних метасоматитів СПЗ. L — тренд зміни концентрацій Zn+Pb+Nb у залишковому ро

зплаві; 1 і 2 — графіки зміни значень відповідно Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru для Zn+Pb+Nb; стрілка — напрямок зниження температури формування модельних і реальних метасоматитів.

6. Серед кількісно оцінених важливих параметрів моделі реальної магматичної і магматогенно-гідротермальної систем КП центральне місце займає Tmodel , коректність оцінки якої визначає надійність усіх наступних модельних побудов. Обов'язковою її умовою є насиченість розплаву відносно Zrn і Ap, що визначає одночасний початок кристалізації і парагенетичні взаємовідносини їх найбільш ранніх мікрокристалів. Це створює умови для реалізації термометрії за такими парагенезисами — важливого незалежного засобу контролю і доповнення Tmodel . Вона заснована на залежності Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru від Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ; Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru і Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru —масові концентрації Y у Ap і Zrn) [15, 35], для якої встановлений лінійний характер і виконане калібрування на основі геотермометричних оцінок за парагенезисами породоутворюючих мінералів (рис. 11, а), що дозволило запропонувати [20] рівняння для рішення зворотної задачі — оцінки T ( Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ):

(3) Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru ,

де Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru — абсолютна похибка. Для ранніх диференціатів (рис. 8) оцінки Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru за Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (рис. 11, б) (T початку кристалізації порід) наближаються до оцінок Tmodel (T розплаву в момент його екстракції з магматичної камери) підтверджуючи їх надійність. Для наступних диференціатів закономірно росте значима величина Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru (рис. 8), яка відбиває, можливо, ступінь охолодження при вторгненні цих послідовно зменшувавшихся за обсягом порцій розплаву. Якщо така інтерпретація вірна, то величина Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru може виявитися інформативною у відношенні рівня глибинності їх кристалізації.

Положення 2. Комплексне використання розподілу елементів-домішок у серіях магматичних гірських порід і в їх циркон-апатитових асоціаціях принципово розширює можливості геохімічного моделювання у відношенні оцінок параметрів і потенційної рудоносності магматичних і сполучених з ними магматогенно-гидротермальних систем (температурний і флюїдний режими, Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Ptotal , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru , Магматичні та магматогенно-гідротермальні рудогенеруючі системи, теоретичне та прикладне значення їх геохімічного дослідження - student2.ru тощо), а також значно підвищує надійність усіх модельних оцінок.

Наши рекомендации