Основные энергетические характеристики шума.
Негативные факторы техносферы, их воздействие на человека, техносферу и природную среду. Критерии безопасности. Негативные воздействия физических факторов на человека, техносферу и природную среду
5.1 Механические колебания
5.2 Акустические колебания
5.3 Вредные вещества
Механические колебания
Шум, вибрация, инфра – и ультразвук по своей физической природе являются упругими колебаниями твердых тел, газов и жидкостей.
Вибрация – механические колебания упругих тел, проявляющиеся в изменении положения центра тяжести, оси симметрии или формы которую тело имело в статическом состоянии.
Воздействие вибраций на человека классифицируются:
· по способу передачи вибраций;
· по направлению действия вибраций;
· по временной характеристике.
В зависимости от способа передачи колебаний человеку вибрацию подразделяют на:
· общую вибрацию,передающуюся через опорные поверхности на тело сидящего или стоящего человека;
· локальную,передающуюся через руки или участки тела человека, контактирующие с вибрирующими поверхностями рабочих столов.
По направлению действия вибрация подразделяется на:
· вертикальную;
· горизонтальную, от спины к груди;
· горизонтальную, от правого плеча к левому плечу.
По временной характеристике различается:
· постоянная вибрация, для которой контролируемый параметр, например, виброскорость за время наблюдения изменяется не более чем в два раза (6 дБ);
· непостоянная вибрация, изменяющаяся по контролируемым параметрам более чем в два раза.
Вибрация относится к факторам, обладающим высокой биологической активностью.
Действие вибрации зависит от:
· частоты и амплитуды колебаний;
· продолжительности воздействия, места приложения и направления оси вибрационного воздействия;
· демпфирующих свойств тканей организма человека;
· явлений резонанса и других условий.
Резонанс человеческого тела, отдельных его органов наступает под действием внешних сил при совпадении собственных частот колебаний внутренних органов с частотами внешних сил.
При повышении частот колебаний выше 0,7 Гц возможны резонансные колебания в органах.
Область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20...30 Гц, при горизонтальных − 1,5...2 Гц.
Особое значение резонанс приобретает по отношению к органу зрения. Частотный диапазон расстройств зрительных восприятий лежит между 60 и 90 Гц, что соответствует резонансу глазных яблок.
Для органов, расположенных в грудной клетке и брюшной полости (грудь, диафрагма, живот), резонансными являются частоты З... 3,5 Гц.
Для всего тела в положении сидя резонанс наступает на частотах 4... 6 Гц.
При действии на организм общей вибрациив первую очередь страдает опорно − двигательный аппарат, нервная система и такие анализаторы, как вестибулярный, зрительный, тактильный.
У рабочих вибрационных профессий отмечены головокружения, расстройство координации движений, симптомы укачивания.
Под влиянием общих вибраций отмечается снижение болевой, тактильной и вибрационной чувствительности. Особенно опасна толчкообразная вибрация, вызывающая микротравматизацию различных тканей с последующими их изменениями.
Общая низкочастотная вибрация оказывает влияние на обменные процессы, проявляющиеся изменением углеводного, белкового, ферментного, витаминного и холестеринового обменов, биохимических показателей крови.
Вибрационная болезнь (ВБ) от воздействия общей вибрации и толчков регистрируется у водителей транспорта и операторов транспортно-технологических машин и агрегатов, часто − на заводах железобетонных изделий.
Рабочие жалуются на боли в пояснице, конечностях, в области желудка, отсутствие аппетита, бессонницу, раздражительность, быструю утомляемость.
В целом, картина воздействия общей низко− и среднечастотной вибрации выражается общими вегетативными расстройствами с нарушениями опорно− двигательного аппарата (мышц, связок, костей и суставов), а также сосудистого тонуса и болевой, температурной и вибрационной чувствительности.
Бич современного производства, особенно машиностроения, − локальная вибрация.
Локальной вибрации подвергаются главным образом лица, работающие с ручным механизированным инструментом.
Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью.
Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов.
В этих случаях рабочие жалуются на ноющие, ломящие, тянущие боли в руках, часто по ночам. Колебания низких частот вызывают резкое снижение тонуса капилляров, а колебания высоких частот − спазм сосудов.
У формовщиков, бурильщиков, заточников, рихтовщиков при среднечастотном спектре вибраций заболевание развивается через 8...10 лет работы. При работе с инструментом ударного действия (клепка, обрубка) виброболезнь проявляется через 12...15 лет.
К факторам производственной среды, усугубляющим вредное воздействие вибраций на организм, относятся чрезмерные мышечные нагрузки, неблагоприятные микроклиматические условия, особенно пониженная температура, повышенная влажность, шум высокой интенсивности, психоэмоциональный стресс. Охлаждение и смачивание рук значительно повышает риск развития вибрационной болезни за счет усиления сосудистых реакций.
Вибрационная болезнь (ВБ) включена в список профессиональных заболеваний. Она диагностируется, как правило, у работающих на производстве; в условиях населенных мест ВБ не регистрируется, несмотря на наличие многих источников вибрации (наземный и подземный транспорт, промышленные источники и др.).
Лица, подвергающиеся воздействию вибрации окружающей среды, чаще болеют сердечно− сосудистыми и нервными заболеваниями и обычно жалуются на неважное самочувствие.
Гигиеническое нормирование вибрацийосуществляется по ГОСТ 12.1.012−90 и СН 2.2.4/2.1.8.566−96.
Документы устанавливают нормируемые параметры и их допустимые значения, режимы труда лиц виброопасных профессий.
При гигиенической оценке вибраций нормируемыми параметрами являются средние квадратичные значения виброскорости v или виброускорения а и их логарифмические уровни Lv, Laдля локальных вибраций в октавных полосах частот, а для общей вибрации − в октавных или 1/3 октавных полосах.
Допускается интегральная оценка вибрации во всем частотном диапазоне нормируемого параметра, а также по дозе вибрации с учетом времени воздействия.
Акустические колебания
Акустические колебания.Физическое понятие об акустических колебаниях охватывает как слышимые, так и неслышимые колебания упругих сред.
Звук − акустические колебания в диапазоне 16 Гц...20 кГц, воспринимаемые человеком с нормальным слухом.
Инфразвук − акустические колебания с частотой менее 16 Гц.
Ультразвук − акустические колебания с частотой выше 20000 Гц.
Распространяясь в пространстве, звуковые колебания создают акустическое поле.
Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Самые низкие значения порогов лежат в диапазоне частот 1... 5 кГц. Порог слуха молодого человека составляет 0 дБ на частоте 1000 Гц, на частоте 100 Гц порог слухового восприятия значительно выше, так как ухо менее чувствительно к звукам низких частот. К концу жизни из-за интенсивного акустического загрязнения окружающей среды у человека снижается верхнее значение восприятия по частоте до 10000 – 15000 Гц.
Болевым порогом принято считать звук с уровнем 140 дБ, что соответствует звуковому давлению 200 Па и интенсивности 100 Вт/м2, звуковые ощущения оцениваются по порогу дискомфорта (слабая боль в ухе, ощущение касания, щекотания).
Шум − это совокупность апериодических звуков различной интенсивности и частоты.
С физиологической точки зрения шум − это всякий неблагоприятно воспринимаемый звук. Окружающие нас шумы имеют разный уровень звука:
· разговорная речь − 50...60 дБА;
· шелест листвы – 30 дБА;
· автосирена − 100 дБА;
· шум двигателя легкового автомобиля − 80 дБА;
· громкая музыка − 70 дБА;
· шум в обычной квартире − 30...40 дБА;
· взрыв атомной бомбы – 200 дБА.
Шумы принято классифицировать по частотным, спектральным и временным характеристикам.
По частоте в зависимости от преобладания звуковой энергии в соответствующем диапазоне частот различают низко−, средне− и высокочастотные шумы.
По временным характеристикам шумы делят на постоянные и непостоянные (колеблющиеся, прерывистые и импульсные).
По спектру − широкополосные и тональные.
Основные энергетические характеристики шума.
Звуковая волна характеризуется следующими параметрами: звуковым давлением, длиной волны, частотой, амплитудой колебания и скоростью звука.
Звуковое давление Р в некоторой точке пространства – это разность между мгновенным значением полного давления в этой точке и средним давлением, которое наблюдается в невозмущенной среде. Единица измерения давления – паскаль (Па). Динамический диапазон восприятия по звуковому давлению 2*10-5 - 2*102 Па.
Длина волны λ – это расстояние, измеренное вдоль направления распространения, между ближайшими точками звукового поля, в которых фазы колебаний одинаковые.
Частота f – число колебаний в единицу времени, Гц; а время, в течение которого совершается полное колебание, – период Т, с.
Скорость звука с связана с длиной волны и частотой следующей зависимостью
с = λ * f, | (5.2.1) |
где с – скорость звука, м/с;
λ – длина волны, м;
f – частота колебаний, Гц.
Под интенсивностью звука (шума) понимают количество звуковой энергии, проходящей через площадь 1 м2, расположенную перпендикулярно направлению распространения звуковой волны, Вт/м2. Динамический диапазон восприятия составляет 10-12 – 102 Вт/м2.
Соотношение между интенсивностью звука и давлением звука Р имеет вид
(5.2.2) |
где Р – звуковое давление, Па;
ρ – плотность среды, кг/м3;
с – скорость звука, м/с.
Характерной особенностью абсолютных значений звукового давления (4), интенсивности звука является большой диапазон, в пределах которого они могут изменяться. Поэтому для удобства вычислений принято оценивать звуковое давление или интенсивность звука не в абсолютных, а в относительных единицах (белах, децибелах) по отношению к пороговым значениям. Измеренные таким образом величины называются уровнями.
Бел Б – это десятичный логарифм отношения интенсивности звука в данной точке к пороговому значению.
(5.2.3) |
где I – интенсивность звука в данной точке, Вт/м2;
I0 – пороговое значение уровня интенсивности, I0 = 10-12 Вт/м2 .
Ухо человека способно фиксировать изменение силы звука на 0,1 Б, и эта величина получила название децибел, дБ.
Тогда уровни интенсивности или звукового давления L, дБ, определятся по формуле:
(5.2.4) |
где Р0 – пороговое значение звукового давления, Р0 = 2 10-5 Па.
Уровни шума на рабочих местах и на территории промышленных предприятий и селитебной территории городов и других населенных пунктов регламентируются нормативными документами: ГОСТ 12.1.003−83 (89) «ССБТ. Шум. Общие требования безопасности» и СНиП II−12−77 «Защита от шума», СН 2.2.4/2.1.8.562−96 и СНиП 23−03−2003.
Существует два подхода к нормированиюшума.
Первый подход.
Основной нормируемой характеристикой постоянного шума в соответствии с ГОСТ 12.1.003−83 (89) являются уровни звукового давления в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. При этом шум не должен превышать допустимых уровней Lн, дБ.
Cреднегеометрическая частота определяется по формуле
(5.2.5) |
При анализе шума весь диапазон частот разбивают на отдельные полосы.
Октавная полоса – это полоса частот, в которой верхняя граничная частота fв в 2 раза больше нижней fн. В зависимости от частоты характер шума может быть низко–, средним и высокочастотным.
Второй подход
Использование эквивалентного уровня звука LA, дБА. Согласно СНиП 23 – 03 – 2003 характеристикой непостоянного шума является эквивалентный уровень звука , измеряемый по характеристике «А» шумомера (Lэкв, дБА).
Уровень звука связан с соответствующим предельным спектром зависимостью
(5.2.6) |
Так, например, в жилых комнатах в дневное время шум должен соответствовать ПС-35 и LA = 40 дБА, а в ночное время − ПС-25 и LA = 30 дБА.
СНиП II−12−77 устанавливает предельно допустимые уровни звукового давления для территорий, непосредственно прилегающих к жилым домам (в 2−х м от ограждающих конструкций).
Для территории жилой застройки принято нормативное значение Lэкв = 55 дБА. Согласно этому документу также установлены максимальные значения (Lmax) уровней звука, равные 70 дБА.
Интенсивный шум на производстве способствует снижению внимания и увеличению ошибок при выполнении работы.
Из−за шума снижается производительность труда и ухудшается качество работы.
Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчики, мостовые краны и т. п.), что способствует возникновению несчастных случаев на производстве.
Степень влияния шума зависит от его интенсивности и продолжительности воздействия, состояния ЦНС и, что очень важно, от индивидуальной чувствительности организма к акустическому раздражителю.
Особенно чувствительны к шуму детский и женский организм.
Высокая индивидуальная чувствительность может быть одной из причин повышенной утомляемости и развития неврозов.
Шум (23)влияет на весь организм человека:
· угнетает ЦНС;
· вызывает изменение скорости дыхания и пульса;
· способствует нарушению обмена веществ;
· возникновению сердечно − сосудистых заболеваний, язвы желудка, гипертонической болезни,
· может приводить к профессиональным заболеваниям.
Шум с уровнем звукового давления до 30…35 дБ является привычным дня человека и не беспокоит его.
Повышение уровня звукового давления до 40...70 дБ в условиях бытовой или природной среды создает значительную нагрузку на нервную систему, вызывает ухудшение самочувствия и при длительном действии может стать причиной неврозов.
Воздействие шума уровнем свыше 85 дБ может привести к потере слуха − профессиональной тугоухости.
При действии шума высоких уровней (140 дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (более 160 дБ) и смерть.
Снижение слуха на 10 дБ практически неощутимо, на 20 дБ − начинает серьезно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.
Помимо снижения слуха при воздействии шума наблюдаются общие изменения в организме. Рабочие жалуются на головные боли, головокружение, боли в области сердца, повышение артериального давления, боли в области желудка и желчного пузыря, изменение кислотности желудочного сока.
Шум вызывает снижение функций защитных систем и общей устойчивости организма к внешним воздействиям.
Гигиенические нормативы шумаопределены ГОСТ 12.1.003 − 83* и СН 2.2.4/2.1.8.562 − 96.
Для нормирования постоянных шумов применяют допустимые уровни звукового давления (УЗД) в девяти октавных полосах частот в зависимости от вида производственной деятельности.
Для ориентировочной оценки в качестве характеристики постоянного шума на рабочих местах допускается принимать эквивалентный уровень звука (дБА), определяемый по шкале А шумомера с коррекцией низкочастотной составляющей по закону чувствительности органов слуха и приближением результатов объективных измерений к субъективному восприятию.
Нормируемой характеристикой непостоянного шума является эквивалентный по энергии уровень звука в дБА.
Для тонального или импульсного шума допустимый уровень звука должен быть на 5 дБ меньше нормативных значений.
В производственных условиях нередко возникает опасность комбинированного влияния высокочастотного шума и низкочастотного ультразвука, например, при работе реактивной техники, при плазменных технологиях
По физической сущности ультразвук (УЗ) (22) не отличается от слышимого звука. Однако в отличие от шума УЗ характеризуется большими знамениями интенсивности (до сотен ватт на квадратный метр).
Он обладает значительно более короткими длинами волн, которые легче фокусировать и соответственно получать более узкое и направленное излучение, т. е. сосредоточивать всю энергию УЗ в нужном направлении и концентрировать в небольшом объеме. Частотный диапазон УЗ способствует большему затуханию колебаний из-за перехода энергии УЗ в теплоту.
Таблица 5.2.3 − Допустимые уровни звукового давления (4) и эквивалентного уровня звука на рабочих местах в производственных помещениях и на территории предприятий по ГОСТ 12.1.003−83* (извлечение)
Территории | Октавные полосы частот, Гц | Эквивалентный уровень звука L экв по шкале А, дБА | |||||||||
31,5 | |||||||||||
Уровни звукового давления, дБ | |||||||||||
Территория больниц, санаториев, непосредственно прилегающая к зданию | |||||||||||
Территория, непосредственно прилегающая к жилым домам (в 2-х м от ограждающих конструкций), площадки отдыха микрорайонов групп жилых домов, площадки детских дошкольных учреждений, участки школ | |||||||||||
Постоянные рабочие места и рабочие зоны в производственных помещениях и на территории предприятий | |||||||||||
По частотному спектру ультразвук делится на:
· низкочастотный УЗ, колебания от 11,2 до 100 кГц;
· высокочастотный УЗ, колебания от 100 кГц до 1000 МГц.
По способу распространения на:
· воздушный УЗ;
· контактный.
Биологический эффект воздействия УЗ на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, на которую действует УЗ.
Длительное систематическое действие УЗ, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, снижение слуха, а также изменения свойств и состава крови, артериального давления. Появляются жалобы на утомление, головные боли.
Контактное воздействие высокочастотного УЗ на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, изменениям костной структуры с разрежением плотности костной ткани.
Профессиональные заболевания зарегистрированы лишь при контактной передаче ультразвука на руки.
Гигиенические нормативы ультразвука определеныГОСТ 12.1.001−89 и ГН 2.2.4.582−96.
Гигиенической характеристикой воздушногоУЗ на рабочих местах являются уровни звукового давления (УЗД), дБ, в 1/3 октавных полосах со среднегеометрическими частотами от 12,5 до 100 кГц.
На частоте 12,5 кГц УЗД не должны превышать 80 дБ, на частоте 16 кГц − 80 дБ (допустимо по согласованию 90), 20 кГц − 100 дБ, 25 кГц− 105 дБ, а в диапазоне частот 31,5...100 кГц− 110 дБ.
Характеристикой контактного УЗ является пиковое значение виброскорости или логарифмический уровень виброскорости.
Допустимые уровни ультразвука в зонах контакта рук и других частей тела оператора с рабочими органами приборов и установок не должны превышать 110 дБ.
Когда рабочие подвергаются совместному воздействию воздушного и контактного ультразвука, допустимые уровни контактного УЗ следует принимать на 5 дБ меньше.
Инфразвук−область акустических колебаний с частотой низкие 20 Гц. В условиях производства инфразвук (ИЗ), как правило, сочетается с низкочастотным шумом, в ряде случаев − с низкочастотной вибрацией.
При воздействии ИЗ на организм с уровнем от 110 до 150 дБ могут возникать неприятные субъективные ощущения и функциональные изменения: нарушения в ЦНС, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе.
Отмечены жалобы на головные боли, головокружение, осязаемые движения барабанных перепонок звон в ушах и голове, снижение внимания и работоспособности; может появиться чувство страха, нарушение равновесия, сонливость, затруднение речи.
При воздействии ИЗ могут проявиться психофизиологические реакции в форме повышения тревожности, эмоциональной неустойчивости и неуверенности в себе.
Установлен аддитивный эффект действия инфразвука и низкочастотиого шума. Надо отметить, что производственный шум и вибрация оказывают более агрессивное действие, чем инфразвук сопоставимых параметров.
Гигиеническаярегламентация инфразвукапроизводится по СН 2.2.4/2.1.8.583−96, которые задают предельно допустимые уровни звукового давления (УЗД) на рабочих местах, дифференцированные для различных видов работ, а также допустимые уровни инфразвука в жилых и общественных помещениях и на территории жилой застройки.
Общий уровень звукового давления для работ различной степени тяжести не должен превышать 100 дБ, для работ различной степени интеллектуально – эмоциональной напряженности не более 95 дБ, на территории жилой застройки − 90 дБ, в помещениях и общественных зданиях − 75 дБ.
На людей и животных может воздействовать ударная волна. Прямое её действие возникает в результате воздействия избыточного давления и скоростного напора воздуха.
Ввиду небольших размеров тела человека ударная волна мгновенно охватывает человека и подвергает его сильному сжатию в течение нескольких секунд и воспринимается как резкий удар. Это может привести к перемещению тела в пространстве.
Косвенные поражения людей и животных могут произойти в результате ударов осколков стекла, шлака, камней, дерева и других предметов, летящих с большой скоростью.
5.3 Вредные вещества
Одним из основных вредных факторов среды обитания человека являются вредные химические вещества (3).
В настоящее время известно около 7 млн химических веществ и соединений, из которых 60 тыс. находят применение в деятельности человека: 5500 − в виде пищевых добавок, 4000 − лекарств, 1500 − препаратов бытовой химии. На Международном рынке ежегодно появляется от 500 до 1000 новых химических соединений и смесей.
Человек может подвергаться их воздействию во всех сферах среды обитания:
· в производственных условиях;
· в быту.
Вредные вещества могут поступать в организм человека из атмосферного воздуха, с питьевой водой, с пищей.
Пары, газы, жидкости, аэрозоли, соединения, смеси (далее вещество) при контакте с организмом человека могут вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами исследования как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.
Воздействие вредных веществ на человека может сопровождаться отравлениями и травмами.
Согласно ГОСТ 12.1.007−76 «Вредные вещества. Классификация и общие требования безопасности» вредное вещество – вещество, которое при контакте с организмом человека в случае нарушения требований безопасности может вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе работы, так и в отдаленные сроки жизни настоящего и последующих поколений.
Химические вещества (органические, неорганические, элементо - органические) в зависимости от их практического использованияклассифицируют на:
· промышленные яды, используемые в производстве: органические растворители (дихлорэтан), топливо (пропан, бутан), красители (анилин);
· ядохимикаты, используемые в сельском хозяйстве: пестициды и др.;
· лекарственные средства (аспирин);
· бытовые химикаты, применяемые в виде пищевых добавок (уксус), средства санитарии, личной гигиены, косметики и т. д.;
· биологические растительные и животные яды, которые содержатся в растениях (аконит, цикута), в грибах (мухомор), у животных (змеи) и насекомых (пчелы);
· отравляющие вещества (ОВ) − зарин, иприт, фосген и др.
Ядовитые свойства могут проявлять практически все вещества.
Однако к ядам принято относить лишь те, которые свое вредное действие проявляют в обычных условиях и в относительно небольших количествах.
Общая токсикологическая классификацияядов включает в себя следующие виды воздействияна живые организмы:
· нервно-паралитическое (судороги, параличи), например, никотин, некоторые пестициды, ОВ;
· кожно-резорбтивное (местные воспаления в сочетании с общетоксическими явлениями), например, уксусная эссенция, дихлорэтан, мышьяк;
· общетоксическое(кома, отек мозга, судороги), например, алкоголь и его суррогаты, угарный газ;
· удушающее(токсический отек мозга), например, оксиды азота, некоторые ОВ;
· слезоточивое и раздражающее (раздражение слизистых оболочек глаз, носа, горла), например, пары крепких кислот и щелочей;
· психотропное (нарушение психической активности, сознания), например, наркотики, атропин.
Вместе с тем яды обладают и так называемой избирательной токсичностью,т. е. представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности яды подразделяют на:
· сердечные, к ним относятся многие лекарственные препараты, растительные яды, соли металлов (бария, калия);
· нервные, вызывающие нарушение психической деятельности − это алкоголь, наркотики, угарный газ, некоторые пестициды;
· печеночные, среди них следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;
· почечные, это соединения тяжелых металлов, этиленгликоль, щавелевая кислота;
· кровяные, это анилин и его производные, нитриты;
· легочные − оксиды азота, озон, фосген и др.