Окислительно-восстановительные 2 страница
4. Азотная - свободный азот тропосферы создается живым веществом почвы. Но, может быть, не меньшее значение имеет биогенная реакция, идущая на поверхности океана, главным образом в планктоне и в саргасовых областях.
5. Углеводородная - сотни и тысячи биогенных газов - углеводородов создаются живым веществом. Все запахи биосферы принадлежат к их числу. Роль этих газов в биосфере чрезвычайно велика, но мало изучена. В небольших примесях к тропосфере они уменьшают тепловое лучеиспускание нашей планеты в космическое пространство и охраняют растения от ночного теплоизлучения.
6. Водная - биогенный круговорот воды. Состояние растительного покрова закономерно связано с влажностью воздуха, содержанием воды в почве и подпочве. Растения высасывают воду из почвы и подпочвы, понижают уровень грунтовых вод и играют основную роль в круговороте воды на нашей планете.
7. Сероводородная и сульфидная - окислительно-восстановительная система (сульфаты и сульфиды) играет большую роль во всех почвах, особенно в условиях щелочной и нейтральной реакции среды. В присутствии органического вещества и при недостатке кислорода система сульфаты-сульфиды при участии микроорганизмов резко сдвигается в сторону сульфидов, развивается процесс восстановления сульфатов до сернистых металлов. Образующийся сероводород уходит в атмосферу, развивается процесс десульфирования или десульфации почвенного раствора, грунтовых или глубинных подземных вод, сопровождающийся постепенным исчезновением сернокислых солей и подщелачиванием раствора.
Концентрационныефункции проявляются в способности живых организмов накапливать химические элементы. Концентрационные функции I рода - живым веществом из окружающей среды захватываются те химические элементы, соединения которых встречаются в теле всех без исключения живых организмов (Н, С, N, О, Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe - всего 14 элементов). Концентрационные функции II рода - наблюдается концентрация определенных химических элементов, которые могут в других живых организмах не встречаться или находиться в низких пределах. Например, водоросли-ламинарии накапливают в себе йод до 1 %, т. е. в количествах, в миллион раз превосходящих содержание этого элемента в окружающей среде. Столь же велика способность голотурий к накоплению ванадия.
Окислительно-восстановительные: а) окислительная - окисляются бедные кислородом соединения: соли, закиси Fe, Mn, нитриты, дитионаты, H2S, N2 и т.д. Эта функция выполняется весьма древними гетеротрофными бактериями; б) восстановительная - выражена для сульфатов при переходе их в H2S и сульфиды. Выполняется специфическими бактериями и грибами, обуславливающими развитие реакций десульфирования, денитрификации, с образованием сероводорода, окислов азота, сернистых металлов, метана, водорода.
Биохимические отличаются тем, что центр их действия находится не во внешней среде, а внутри организмов и теснейшим образом связан с биохимическими процессами построения организма и смерти. I биохимическая - связана с питанием, дыханием, размножением организмов. II биохимическая - связана с посмертным разрушением тел живых организмов. При этом происходит ряд биохимических превращений: живое тело - биокосное - косное.
Человеческие связаны с биогенной миграцией атомов, многократно усиливающейся под влиянием деятельности человека, его разума, созданной им техники.
Организмы, которые избирательно накапливают один или несколько химических элементов, называют организмами-концентраторами. Различают следующие организмы-концентраторы: водородисто-кислородные и углеводородные, азотные и натровые, магниевые и алюминиевые, кремниевые и фосфорные, серные и кальциевые, железистые. Известны растения-концентраторы тяжелых металлов - лишайники, мхи, некоторые другие представители растительного мира. К наиболее известным растениям-концентраторам относятся картофель и подсолнечник (по отношению к калию); бобовые - накапливают кальций; злаки - накапливают кремний; чай, плауны - накапливают алюминий; различные галофиты - натрий, хлор; мхи - поглощают железо; водоросли - концентрируют в себе йод.
Представители животного мира также могут концентрировать в своих телах те или иные химические элементы. Например, моллюски, кораллы, фораминиферы - отдают предпочтение кальцию; губки, диатомовые водоросли, радиолярии - кремнию; раки, пауки - меди. Но особенно избирательно накапливают ряд химических элементов некоторые микроорганизмы, превышая тем самым в сотни раз содержание этих элементов в среде (серобактерии, железобактерии и т.д.).
Вопрос 9.
Одна из наиболее сложных форм миграции, обусловленная жизнедеятельностью живых организмов, - биогенная миграция. Организмы удерживают миллиарды тонн минеральных веществ. Поэтому элементы с высокой биогенностью (P, Са, К, S, С, N) обладают малой миграционной способностью, чем элементы, не играющие существенной роли в хим. составе живого вещества (Cl, Na, Mg).
Химические элементы малой биогенности легко отбрасываются или мало захватываются живыми организмами, поэтому они характеризуются высокой миграционной способностью и выносятся далеко за пределы ареала своего образования, участвуют в процессах соленакопления (карбонаты и бикарбонаты, сульфаты и хлориды натрия и магния).
Эта миграция не может анализироваться только на основе общих законов физики и химии. Она подчиняется законам развития живого вещества (биоценозы, симбиоз, конкурентная борьба и др.). Такие константы элементов, как радиусы ионов, валентность, недостаточны для анализа биогенной миграции. Организмы существуют в особом информационном поле, для них характерны процессы управления, переработки информации, отсутствующие в неживой природе.
Физико – химическая миграция – определяется законами физики и химии – диффузией, растворением, осаждением, сорбцией, десорбцией и т.д. Это Лучше всего изучена миграция веществ в водных растворах в виде ионов (ионная миграция), зависящая от растворимости солей, щелочно-кислотных и окислительно-восстановительных условий. Иным законам подчиняется коллоидная миграция, миграция газов.
Вопрос 10.
Чтобы биосфера не переставала существовать и чтобы не прекращалось ее развитие, на Земле постоянно должен осуществляться круговорот биологически важных веществ. При рассмотрении биогеохимического круговорота любого вещества необходимо выделять две части запаса этого вещества: 1) обменный фонд - это часть элемента, которая находится в круговороте, он составляет незначительную часть общего объема элемента; 2) резервный фонд - это часть элемента, которая не циркулирует и пока что не будет циркулировать, однако может быть при необходимости включена в круговорот. Резервные фонды отличаются по степени подвижности и легкости вовлечения в круговорот. Различают газообразный резервный фонд, который находится в атмосфере и является наиболее подвижным и доступным (N, О, С), и осадочный резервный фонд, который находится в литосфере или гидросфере и труднее включается в обменный фонд.
Вопрос 11.
Биогеохимический круговорот (цикл) веществ - обмен веществом и энергией между различными компонентами биосферы, обусловленный жизнедеятельностью организмов и носящий циклический характер. Движущей силой биогеохимических циклов служат потоки энергии Солнца и деятельность живых организмов. Так как биогеохимические циклы незамкнуты, часть вещества всегда выходит из современного биосферного цикла (длительностью от десятков и сотен до нескольких тысяч лет). В условиях полной замкнутости круговорота веществ в природе не происходило бы эволюции. Обновление всего живого вещества биосферы Земли осуществляется в среднем за 8 лет. При этом вещество наземных растений (фитомасса суши) обновляется примерно за 14 лет. В океане циркуляция вещества происходит во много раз быстрее: вся масса живого вещества обновляется за 33 сут., а фитомасса океана - каждые сутки.
Емкость биологического круговорота - количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).
Вопрос 12.
Нам известно, что углерод, азот, водород, кислород, фосфор, сера формируют живые организмы. Однако эти организмы не смогут жить без достаточного количества многих других элементов - катионов металлов.
Среди них калий, кальций, магний (иногда натрий) относятся к группе макроэлементов, так как они необходимы в больших количествах (выражающихся в сотых долях сухого вещества); однако такие элементы, как железо, бор, цинк, медь, марганец, молибден, кобальт, анион хлора, относятся к микроэлементам и нужны лишь в малых количествах (выражающихся в миллионных долях сухого вещества).
На суше главным источником биогенных элементов (катионов) служит почва, которая получает их в процессе разрушения материнских пород. Катионы абсорбируются корнями, распределяются различными органами растений, накапливаются в листве, т.е. входят в корм растительноядных потребителей последующих порядков в цепи питания.
Минерализация погибших организмов возвращает биогенные катионы в почву, создается впечатление, что цикл способен продолжаться беспрерывно. Однако почва выщелачивается дождями, дождевые воды переносят катионы в систему подземного стока, а также и в поверхностный сток: в реки, моря, иногда в значительных количествах.
Выщелачивание - автокаталитический процесс: чем больше оно прогрессирует, тем больше деградируют почвенные коллоиды. Положение становится особенно тяжелым в тропических местностях: ливневые дожди, низкая абсорбируемость почвенного комплекса (малое количество гумуса), истощение почв монокультурами сахарного тростника, кофе, какао, кукурузы, арахиса.
Когда вырубаются или выжигаются леса под сельское хозяйство, то минерализованный таким путем запас биогенных веществ быстро выщелачивается дождями и почва утрачивает свое плодородие. Если на ней временно прекратить посевы, то она вновь может дать жизнь лесу, но уже вторичному, с менее ценой биомассой, чем у первоначального сообщества. После повторения подобных операций почва будет покрываться все более и более скудной растительностью с уменьшающейся продукцией биомассы. Сначала образуется саванна, затем степь, наконец, пустыня. Значит, круговорот минеральных катионов сопровождает циклы углерода и азота. В умеренных широтах последствия выщелачивания не так резки, но все-таки в результате вырубок (сплошных под корень), при корчевке пней и снятия дерна разрушается гумус - ресурс питательных веществ. Следовательно, нарушается круговорот, его полнота: переход к пустоши или лугу, со скудной растительностью и меньшим запасом биомассы.
В своей работе «Об участии живого вещества в создании почв» Вернадский впервые обосновал фундаментальную идею об органогенном парагенезисе, которая имеет большое прикладное значение. Еще в 1909 г. он ввел в науку понятие о парагенезисе химических элементов в земной коре. Явлением органогенного парагенезиса Вернадский объяснил накопительную и распылительную в отношении химических элементов функцию живого вещества.
Вопрос 13.
Постоянный обмен влагой между гидросферой, атмосферой и земной поверхностью, состоящий из процессов испарения, передвижения водяного пара в атмосфере, его конденсации в атмосфере, выпадения осадков и стока, получил название круговорота воды в природе. Атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично — просачиваются в землю и образуют подземные воды.
Физические свойства воды 1). Молекулы воды осуществляют переходы из одного состояния в другое (фазовые переходы). Испарение - Конденсация - Замерзание - Таяние ,Возгонка - из льда в пар (испарение с поверхности льда)- поглощение тепла. Сублимация - из пара в лед (конденсация в твердую фазу), например, иней - выделение тепла.
2). При нормальном давлении температура плавления льда и замерзания воды равна 0°С. 3). С увеличением солености понижается температура замерзания воды 4). Плотность воды в твердом состоянии меньше, чем в жидком. 5). В диапазоне температуры воды от 0 до 4°С плотность воды увеличивается. 6). С увеличением температуры от 0 до 4°С объём химически чистой воды уменьшается 7). Высокая удельная теплоемкость воды (ср). ср при 15°С = 4190 Дж/кгС0. ср минимальна при температуре равной 33 8). Очень малая теплопроводность 9). Вязкость воды невелика, поэтому вода подвижна. 10). Очень высокое поверхностное натяжение. Поэтому происходит: размыв грунтов водой; очень большая разрушительная деятельность дождевых капель; перемещение воды по порам и капиллярам в земной коре. 11). Свет частично поглощается и преломляется, поэтому проникает лишь на небольшую глубин.12). Вода хорошо проводит звук (в 4-5 раз больше, чем в воздухе). 13). Низкая электропроводность, которая увеличивается при повышении минерализации количества ионов хлора и калия.
Химические свойства воды1). Вода - слабый электролит. 2). Вода - универсальный растворитель. В зависимости от размера частиц образуются чистые и коллоидныерастворы. Природные воды содержат 45 главных химических элементов. Все вещества, входящие в состав воды делятся на 6 групп:• Растворимые газы (О2, N2, СО2, ионы Н). • Главнейшие ионы. Их восемь: четыре положительных (катионы) и четыре отрицательных (анионы).Катионы - Na, Ca, Mg, К;Анионы - С1 (хлорит), SO4 (сульфат), СО3 (карбонат), НСО3 (гидрокарбонат).• Биогенные вещества - N2, P, Si; •Микроэлементы - Вг, Си, В и т.д.; тяжелые металлы - Li,Ba,Fe,Ni, Zn, Co, Pb, Hg, Ra;• Органические вещества - углеводороды, белки, липиды, гуминовые вещества идр.;•Загрязнители - нефтепродукты, ядохимикаты, удобрения, ПАВ, Pb, Hg, Zn. Совокупность проявления химических и некоторых физических свойств определяет качество воды.
Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсального растворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время — достаточную сложность образующихся комплексных соединений. Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причём именно в том, который широко представлен на планете Земля в настоящее время.
Гипотеза советского академика А. П. Виноградова исходит из того, что первоисточником воды на Земле являются глубинные воды, образующиеся за счет дифференциации вещества внутри планеты, выделения и миграции из глубин легкоплавких и легколетучих компонентов. Если учесть, что наша планета первоначально представляла собой газообразное и жидкое тело, то указанного количества воды было достаточно для образования водной оболочки Земли. За счет определенных термодинамических условий и физико-химических процессов происходило образование молекул воды, которая, пробиваясь на поверхность, формировалась в Мировой океан. Испаряясь с поверхности океана, вода в виде облаков попадала в атмосферу, а затем, конденсируясь, выпадала в виде осадков на поверхность Земли, образуя таким образом общий круговорот. Так, по мнению ученых, формировалась земная гидросфера.
Общий объем (единовременный запас) водных ресурсов составляет 1390 млн. куб. км, из них около 1340 млн. куб. км — воды Мирового океана. Менее 3 % составляют пресные воды, из них технически доступны для использования — всего 0,3 %.
Рациональное использование водных ресурсов – сегодня важнейшая проблема. Разработка и внедрение систем использования воды по замкнутому циклу – основной путь ее решения. Это означает: комплексную переработку сырья, замену многостадийных процессов одностадийными, извлечение ценных веществ из сточных вод, переход технологических процессов переработки из жидкой фазы в газовую, использование вместо воды других растворителей. Защитить водоемы от загрязнения можно и с помощью локальных очистных сооружений.
Вопрос 14.
Содержание углерода в атмосфере Земли составляет 0,046% в форме двуокиси углерода и 0,00012% в форме метана. Среднее его содержание в земной коре – 0,35%, а в живом веществе – около 18%. С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Основным резервуаром углерода в биосфере, из которого этот элемент заимствуется живыми организмами для синтеза органического вещества, является атмосфера. Углерод содержится в ней, главным образом, в форме диоксида СО2. Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. По трофическим цепям углерод переходит в организмы различных животных. Возвращение углерода в окружающую среду происходит двумя путями. Во-первых – в процессе дыхания. Второй путь возвращения углерода – разложение органического вещества -минерализация. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО2 и Н2О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Накопители и хранители углерода – это живая биомасса, гумус, известняки. Естественными источниками углекислого газа являются процессы разложения органического вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах.
Цикл биологического круговорота углерода не замкнут. Что очень важно, в том числе, и для нас. Этот элемент нередко выводится из геохимического круговорота на длительный срок в виде карбонатных пород, торфов, сапропелей, углей, гумуса. Таким образом, часть углерода всё время выпадает из биологического круговорота, связываясь в литосфере в составе различных горных пород. Почему же тогда не возникает дефицита углерода в атмосфере? Причина в том, что его потеря компенсируется постоянным поступлением СО2 атмосферу в результате вулканической деятельности. То есть, в атмосферу постоянно поступают глубинные углекислый газ и окись углерода. Это позволяет поддерживать баланс углерода в биосфере нашей планеты.
Хозяйственная деятельность человека интенсифицирует биологический круговорот углерода и может способствовать повышению первичной, а, следовательно, и вторичной продуктивности. Повышение концентрации углекислоты до 0,07% резко ухудшает условия дыхания человека и животных. Расчеты показывают, что при условии сохранения современного уровня добычи и использования горючих ископаемых потребуется чуть больше 200 лет для достижения такой концентрации углекислого газа в атмосфере Земли. В отдельных крупных городах эта угроза вполне реальна уже сейчас.
Вопрос 15.
Кислород– самый распространенный элемент не только земной коры (его кларк 47), но и гидросферы (85,7%), а также живого вещества (70%). Существенную роль этот элемент играет и в составе атмосферы (более 20%). Благодаря исключительно высокой химической активности, кислород играет особо важную роль в биосфере. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов. Для него характерна как ионная, так и неионная форма миграции в растворах. Благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.
Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакции, в результате которых выделяется свободный кислород. Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды – тропосфера. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики – выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды. Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.
Таким образом, общая схема круговорота кислорода в биосфере складывается из двух ветвей:
• образование свободного кислорода при фотосинтезе;
• поглощение кислорода в окислительных реакциях.
В биогеохимическом круговороте можно выделить потоки кислорода между отдельными компонентами биосферы.
В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.
Вопрос 16.
Азот и его соединения играют в жизни биосферы такую же важную и незаменимую роль, как и углерод. Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная – N2. В отличие от углерода, атмосферный азот в силу устойчивости молекулы не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:
• некоторые свободноживущие почвенные бактерии;
• симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);
• цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.
В результате деятельности организмов – фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH3).
В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.
Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму.
В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.
Таким образом, основными специфическими чертами круговорота азота в биосфере можно считать следующие:
• преимущественную концентрацию в атмосфере, играющей исключительную роль резервуара, из которой живые организмы черпают запасы необходимого им азота;
• ведущую роль в круговороте азота почв и, в особенности, почвенных микроорганизмов, деятельность которых обеспечивает переход азота в биосфере из одних форм в другие.
В то же время наблюдается парадокс – при огромном содержании азота в атмосфере вследствие чрезвычайно высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азотных удобрениях всегда высока. Поэтому ежегодно в почву вносится по разным оценкам от 30 до 35 млн. тонн азота в виде минеральных удобрений. Таким образом, поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан. Это часто приводит к существенному загрязнению окружающей среды и тяжелым заболеваниям человека и животных. Существенным нарушением цикла азота является и все возрастающее количество отходов животноводства, промышленных отходов и стоков больших городов, поступление в атмосферу аммония и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (выхлопы сверхзвуковых самолетов, ракет, ядерные взрывы), так как это может быть причиной разрушения озонового слоя. Все это, естественно, сказывается на биогеохимическом цикле азота.
Вопрос 17.
Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте, так же как и для серы, играет литосфера.
Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.
Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере – в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы.
Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно. Основными особенностями круговорота фосфора, таким образом, являются:
• отсутствие атмосферного переноса;
• наличие единственного источника – литосферы;
• тенденция к накоплению в конечных водоёмах стока.
При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод. Таким образом, в последе время общая картина распределения миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления:
· производство фосфорсодержащих препаратов и их использование в быту;
· производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения;
· развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.