Энергетические и пластические вещества рыбы
В эту группу входят соединения, которые вносят в организм человека, употребляющего в пищу рыбу, запасы энергии и пластический материал. Это вода, белки, жиры, углеводы, минеральные вещества.
Вода растворяет многие органические и неорганические вещества, разносит растворенные вещества пищи в органы и ткани рыбы, усиливает многие химические и биохимические реакции.
Ткани рыбы представляют собой сложную коллоидную систему, обладающую способностью связывать воду, которая особенно необходима для живого организма. Содержание воды в тканях гидро-бионтов больше, чем в тканях наземных животных и растений.
Так, если в наземных травах содержание воды достигает 75%, в водорослях – 88, в мясе наземных животных – до 79, то в мясе рыб -до 92%. Количество воды в однотипных тканях гидробионтов зависит от их вида, пола, возраста, физиологического состояния, времени года. У рыб содержание воды в мышцах уменьшается с возрастом и повышением упитанности. Недостаток или отсутствие пищи во время зимовки и нереста обусловливает увеличение содержания воды.
Количество воды в тканях одного и того же гидробионта неодинаково и определяется содержанием в них протоплазмы. Максимальное количество воды (89–99%) находится в биологических жидкостях (кровь, слизь, лимфа), а минимальное (2–25%) – в соединительной ткани. Особенностью воды, содержащейся в гидробионтах, является присутствие молекул тяжелой воды, количество которой с увеличением глубины обитания возрастает.
В тканях рыбы влага распределена между пучками волокон, отдельными волокнами и в самих волокнах. Оболочки волокон и пучков также содержат влагу.
При осмотическом, механическом или тепловом воздействиях влага проникает через оболочки со скоростью, зависящей от интенсивности этого воздействия и сопротивления оболочек.
Ткани рыбы можно рассматривать как полидисперсные системы, в которых вода представляет собой дисперсную среду, а органические и неорганические вещества с различной степенью дисперсности являются дисперсной фазой. Согласно классификации А.В. Лыкова, рыбу, как и многие пищевые продукты, можно отнести к капиллярно-пористым телам. По классификации П.А. Ребиндера, основанной на приближенной оценке энергии связи, в мышечной ткани рыбы имеют место следующие формы связи влаги с материалом.
Адсорбционная форма связи – это связь влаги в гидратных оболочках, при которой происходит присоединение молекул под влиянием молекулярного силового поля, сопровождающееся значительным выделением тепла. Среднее количество адсорбционно связанной влаги в свежей рыбе может быть принято равным 6% массы рыб или 24% абсолютного сухого вещества.
Осмотическая форма связи – это связь влаги сложно построенной мицеллой при формировании геля. Мышечные ткани можно представить как коллоидную систему, в которой дисперсная фаза образует клеточную структуру в виде полупроницаемых мембранных оболочек. Удаление влаги из системы при сушке происходит под действием разности осмотических давлений растворимой фракции по закону избирательной диффузии. К осмотически связанной следует отнести также жидкость, находящуюся внутри клеток, т. е. иммобилизованную при образовании коллоидной структуры.
Иммобилизованная влага – влага, заполняющая капилляры радиусом более 105 см (влага макрокапилляров), и влага, находящаяся в капиллярах радиусом менее 10-5 см (влага микрокапилляров). К капиллярной влаге в тканях рыбы относится, очевидно, влага, находящаяся в кровеносных и лимфососудах, а также в порах клеточных мембран.
Влага смачивания определяется путем расчета и составляет в мелкой рыбе около 0,5–1% начальной массы.
Структурно-свободная влага, получаемая методом прессования и центрифугирования, составляет 6-8% общей массы навески.
Таким образом, в свежей рыбе соотношение влаги по формам связи с белковыми веществами составляет приблизительно (% общей массы): адсорбционная влага – 23, осмотическая влага и влага микрокапилляр – 70, влага макрокапилляров – 7. Основное количество воды в мышечной ткани рыб находится в осмотической и капиллярной формах связи.
Белки – наиболее важные и сложные по химической природе вещества, входящие в состав мышечной и соединительной тканей, образующих мясо рыбы.
Различные виды белков, находящихся в составе мышц рыбы, имеют разные структуру, физико-химические и биологические свойства, однако элементарный состав их мало различается.
В состав мяса рыб, как и теплокровных животных, входят главным образом простые, преимущественно солерастворимые белки типа глобулинов – миозин (группа родственных белков – миозинов), актин, актомиозин и в небольшом количестве тропомиозин. Эти белки образуют миофибрилльт мышечных клеток и в сумме составляют более половины всех белковых веществ мяса рыб. Следующую, наиболее значительную фракцию белков, составляющую до 20-25% всех белковых веществ, представляют экстрагируемые водой белки типа альбуминов – миоген (миоген А и Б) – 6Љ8%, миоальбумин – 7, глобулин X – 8–10%, входящие в состав саркоплазмы.
Помимо указанных белков в состав мышечных волокон входят нерастворимые в воде и растворах нейтральных солей, но растворимые в слабых растворах щелочей и кислот белки – миостромины (в составе саркоплазмы), а также нуклеопротеиды (в составе клеточных ядер) и другие сложные белки. Нуклеопротеиды состоят из простых белков – гистонов или протаминов, фосфорной кислоты, углевода – рибозы или дезоксирибозы и пуриновых (аденин, гуанин) или примидиновых (цитозин, урацил, тимин) оснований.
В мясе рыб содержится также небольшое количество нерастворимых в воде, растворах солей, щелочей и кислот белковых веществ (протеиноидов), входящих в состав сарколеммы мышечных волокон и соединительной ткани (миосепт и эндомизия). Эти вещества, называемые обычно белками стромы, или соединительноткаными белками, представлены в основном коллагеном. При кипячении в воде он переходит в клей или плотин, чем объясняется некоторая клейкость (липкость) отваренного мяса свежей рыбы, а также застудневание рыбных отваров. У костистых рыб коллаген составляет 2~4% всех белковых веществ мяса, у некоторых видов – до 5–7% (судак, щука и др.). В мясе хрящевых рыб содержится 8-10% коллагена всех видов белков.
Наиболее важным из всех мышечных белков является миозин ввиду его количественного преобладания и особых биологических свойств – наличия ферментной аденозинтрифосфатной активности и способности при определенных условиях соединяться с актином, образуя комплекс актомиозина. Последний обусловливает сокращение мышц во время механической работы и при посмертном окоченении. Ферментной активностью кроме миозина обладает миоген, катализирующий окислительные превращения углеводов (гликогена и гексозы).
Белки находятся преимущественно в коллоидном состоянии (в виде гелей и золей), что предопределяет неустойчивость и изменчивость свойств (денатурацию) белковых веществ мяса рыбы при изменении условий среды.
Известно, что белки состоят из различных аминокислот, среди которых различают заменимые, синтезирующиеся в организме животных и человека, и незаменимые, несинтезирующиеся (должны поступать в организм с пищей). К последним относят валин, лейцин, изолейцин, лизин, метионин, цистин, треонин, триптофан, фенилаланин. Белки, содержащие все эти незаменимые аминокислоты, являются полноценными. Это практически все белки мяса рыбы, исключая белки стромы.
Коллаген – неполноценный белок, поскольку в нем отсутствуют триптофан, цистин, цистеин, содержится очень мало метионина и тиразина. Кроме того, воздействие на него пищеварительных ферментов затруднено и поэтому он является биологически неполноценным.
Содержание отдельных аминокислот в мясе рыбы изменяется в зависимости от ее вида, времени и места лова, технологии выращивания, кормления, физиологического состояния, продолжительности и условий хранения.
Жирыявляются основным источником энергии рыб. Большое значение имеют также регулирущая, теплоизолирующая и гидростатическая функции жиров. Жиры – самый лабильный компонент тела рыбы. Уровень жировых запасов в теле рыб изменяется под влиянием сезонных и возрастных физиологических особенностей организма, а также условий обитания. Поэтому содержание в теле рыбы жира и интенсивность жиронакопления являются очень чувствительными индикаторами биологического и физиологического состояния рыбы, а также степени его «благополучия» в связи с определенными факторами среды. Содержание жира в теле рыб подвержено значительным колебаниям в зависимости от сезона, возраста, биологического состояния, кормовой базы и других факторов среды. С возрастом содержание жира в теле рыб увеличивается. Во время нереста содержание его находится на низком уровне, а в конце нагула достигает максимальной величины. Время зимовки и миграций влияет на уменьшение жирности рыб.
По содержанию жира рыб делят на тощих, у которых содержание жира до 1% (треска, судак, щука); средней жирности, содержащих 4–8% жира (сом, камбала, сиг), и жирных – с содержанием жира в теле более 8% (сельдевые, лососевые, осетровые).
Жиры представляют собой сложные эфиры трехатомного спирта глицерина и высокомолекулярных жирных кислот. Важная особенность жиров рыб – преобладание в их составе ненасыщенных жирных кислот и наличие среди них высоконепредельных с четырьмя -шестью двойными связями, которые в жирах наземных животных отсутствуют.
Состав жирных кислот в жире разных видов рыб неидентичен и может сильно различаться. Количество насыщенных кислот в жире мяса разных рыб составляет 17-30%, а ненасыщенных -- 70-83% общей массы всех жирных кислот. Из насыщенных жирных кислот в рыбьем жире в наибольшем количестве обнаружены следующие (в % общей массы всех жирных кислот): миристиновая – 0,6-6,5; пальмитиновая – 9,3-24,2; стеариновая – 0,9-4,4. Ненасыщенные жирные кислоты (в % общей массы всех жирных кислот): зоомариновая – 4,1-7,2; олеиновая – 9,7-35,6; линолевая и линоленовая - 0,4-4,3; эйкозеновая - 0,1-19,3; арахидоновая - 0,8-2,9; эруковая -0,2-29,6; клупанодоновая – 0,7-3,2. Кроме указанных выше кислот, из насыщенных кислот обнаружены каприновая и каприловая (суммарное содержание около 1%) и лауриновая (следы), а из ненасыщенных – тетрадециленовая (до 1,2%), эколеиновая, цитолеиновая, терапиновая и др.
Выделенные из тканей рыбы жиры в отличие от жиров наземных животных при комнатной температуре имеют жидкую консистенцию благодаря наличию в их составе большого количества ненасыщенных кислот. Плотность рыбных жиров 0,92-0,93 г/см3. Число омыления жиров колеблется от 180 до 195, а двойное число – от 103 до 176.
Кроме жиров в мясе рыб содержатся жироподобные вещества -стеролы. Это инертные вещества, но в организме участвуют в образовании таких биологически активных веществ, как кортикальные и половые гормоны, желчные кислоты и др.
Воски объединяют группу органических веществ животного и растительного происхождения и являются эфирами высокомолекулярных алкоголей и жирных кислот. К воскам животного происхождения относят ланолин и спермацет.
Фосфолипиды представлены сложными эфирами, в состав которых входят многоатомные спирты, высокомолекулярные жирные кислоты, азотистые основания и фосфорная кислота. Они имеются в составе белково-липидных комплексов и участвуют в образовании липидной оболочки. Наиболее высокое содержание фосфолипидов в клетках тканей мозга (3-8% в сухом веществе) и нервной ткани, много их в тканях легких, печени, почек, сердца (2-4% в сухом веществе), в икре рыб.
Цвет жира у разных видов рыб неодинаков. Чаще всего он имеет желтоватую окраску различных оттенков, у лососевых – красную, у сардин – зеленоватую. В жирах рыб найдено несколько видов пигментов, это в основном каротиноиды: лютеин, астаксантин и тараксантин. Зеленоватую окраску обусловливает наличие хлорофилла.
Углеводыприсутствуют в мясе рыбы в очень малых количествах. Содержание их зависит от условий жизни рыбы перед ее засыпанием (смертью). Содержание углеводов в мышечной ткани рыб не превышает 1%. Это главным образом животный крахмал – гликоген.
В свежей рыбе в небольших количествах имеются продукты гидролиза гликогена: глюкоза, пировиноградная и молочная кислоты. В ничтожно малых дозах найдены рибоза, глюкозамин и др. Глюко-замин, например, входит в состав мукопротеидов, а рибоза – в адениловый комплекс.
Сладковатый вкус рыбы и особенно ухи объясняется гидролитическим расщеплением гликогена до глюкозы, количество которой достигает 0,75%. Роль углеводов рыбы в пищевом отношении мала из-за их небольшого содержания. Однако значение их в посмертных изменениях велико. Кроме того, в значительной степени они влияют на цвет, вкус и запах рыбных продуктов. Это объясняется тем, что редуцирующие углеводы легко вступают в соединения с продуктами гидролиза белков с образованием целого ряда веществ, оказывающих влияние на качество рыбных продуктов.
Минеральные вещества также содержатся в тканях рыб. Рыбы обитают в среде, отличающейся высоким содержанием солей (от 50 до 290 мг/л – в пресной и от 15 000 до 38 000 мг/л – в морской) и определенным количеством газообразного кислорода, что накладывает специфический отпечаток на количественное содержание и качественный состав минеральных веществ, входящих в состав тканей рыб. Содержание их в тканях рыб зависит от физиологического состояния и анатомического строения тканей, а также от биохимических особенностей вида (табл. 10.1).
Таблица 10.1
Содержание минеральных веществ в тканях рыб
Ткань | Содержание золы, % | ||
Нативное вещество | Сухое вещество | ||
Кровь | 1,0-1,8 | 12,4-24,3 | |
Мышцы | 0,4-4,1 | 1,9-16,6 | |
Кости | 5,0-15,6 | 20,4-34,7 | |
Чешуя | 16,5-32,0 | 38,6-48,3 | |
Для формирования и роста костной ткани необходимы соли кальция, фосфорной кислоты, магния и фтора. Для формирования плазмы крови и межтканевой жидкости в первую очередь – натрий и калий в виде хлористых, двууглекислых и фосфорнокислых солей.
В создании и регуляции осмотического давления основное значение имеют ионы натрия, калия и хлора. У костистых рыб ионы натрия сосредоточены преимущественной в биологических жидкостях (плазме крови, межклеточных жидкостях, соке поджелудочной железы и т. п.) главным образом в виде хлористого натрия, который и ответствен за осмотическое давление этих биологических жидкостей.
Ионы калия сосредоточены в основном в клетках, причем присутствуют не только в виде хлоридов, но и в виде белковых соединений.
В мышцах ион натрия поддерживает нормальную мышечную возбудимость, а ион калия действует угнетающе. Ионы натрия и калия участвуют в поддержании кислотно-щелочного равновесия в организме. Калий активизирует некоторые ферменты, участвующие в углеводном обмене. Избыток хлористого натрия оказывает токсическое действие. В тканях рыб содержание натрия колеблется от 30 до 130 мг%, а калия – от 60 до 420 мг%.
Кальций в организме находится главным образом в костной ткани. Он депонируется в основном в виде углекислых и фосфорнокислых солей. При недостатке кальция нарушается нормальное формирование костной ткани, в результате чего она становится хрупкой.
Магний входит в состав некоторых белков и ряда биологически активных веществ, является обязательным компонентом костной ткани. Ионы калия, кальция и магния существенно влияют на активность актомиозина и миозина; ион магния играет большую роль в реакции гидролиза АТФ. В мышцах большая часть содержащегося кальция и около 10% магния связаны с актином и миозином. Содержание кальция в мясе костистых рыб 17–270 мг%, магния - 10-70 мг% на сырое вещество.
Фосфор является незаменимым элементом, так как входит в состав разнообразных фосфорно-органических соединений: нуклео-протеидов, фосфолипидов, коферментов, АТФ, АДФ. В составе АТФ фосфор обусловливает образование макроэнергетических связей, являющихся передатчиками энергии от одного вещества к другому. В сочетании с кальцием фосфор образует опорную ткань костного скелета. Входя в состав неорганических солей, он участвует в поддержании кислотно-щелочного равновесия. В костной ткани сосредоточено 85% присутствующего в организме фосфора. В мясе костистых пресноводных рыб содержится 110-550 мг% фосфора на сырое вещество.
К соединениям белкового характера, содержащим двухвалентную серу в форме сульфгидрильных групп (SH), относятся аминокислоты (метионин, цистин, трипептид глюкатион, коэнзим А). При биологическом окислении из серы образуются сульфаты и эфиросерные кислоты.
Единственным источником поступления микроэлементов в организм рыб является пища. Всасываются они через слизистую оболочку желудка, попадают в кровь и транспортируются в печень (основное депо), половые железы (цинк, никель), содержатся в белом веществе мозга (молибден), щитовидной железе (йод) и т. д.
Марганец участвует в реакциях многих энзиматических систем, либо являясь их структурным элементом, либо выступая в роли кофермента, т. е. легко диссоцируемого компонента энзима. Важную роль марганец играет в окислительно-восстановительном цикле Кребса и оказывает благоприятное действие на рост и созревание хрящевых и костных структур. Содержание марганца в тканях рыб от 0,014 до 0,90 мг%. Наибольшее содержание его обнаруживается в тканях печени.
Цинк является одним из незаменимых биогенных элементов, поскольку входит в состав чрезвычайно важного фермента – карбо-ангидразы эритроцитов, что ставит его в тесную зависимость с процессами дыхания и промежуточного обмена. Содержание цинка в тканях пресноводных костистых рыб составляет 0,11–0,60 мг% на сырое вещество.
Кобальт входит в состав витамина В12, участвующего в синтезе гемоглобина. Недостаток кобальта приводит к ухудшению белкового и углеводного обмена, уменьшению числа эритроцитов в крови, падению массы тела. В мышцах рыбы содержится от 0,005 до 0,21 мг% кобальта. Более высокое содержание его (до 0,67%) обнаружено в печени рыб.
Железо находится во всех органах и тканях животных и человека и входит в состав гемоглобина и нуклеопротеидов ядерной субстанции клеток. Этот металл является жизненно важным в регуляции различных уровней обмена в организме. Железа в мясе костистых рыб содержится от 0,03 до 4,6 мг% на сырое вещество.
Медь принимает активное участие в процессах кроветворения, роста и размножения, оказывает регулирующее влияние на гипофизарные гормоны, на содержание адреналина, инсулина и других гормонов в крови. Содержание меди в мясе костистых пресноводных рыб составляет 0,001–0,004 мг% на сырое вещество.