Групповую (относительную)
Стереоспецифичность,
редко двойственную специфичность.
Стереоспецифичность– катализ только одного из стереоизомеров, например:
- специфичность к L- или D-аминокислотам – например, почти все ферменты человека взаимодействуют с L-аминокислотами,
- ферменты метаболизма углеводов имеют специфичность к D-, а не к L-моносахаридам,
- специфичность к цис- и транс-изомерам. Например, аспартазареагирует только с транс-изомером – фумаровой кислотой, но не с малеатом (цис-изомер).
Стереоспецифичность аспартазы к транс-изомеру субстрата
Реакция расщепления мочевины |
2. Абсолютная специфичность – катализ только одного вещества. Например, расщепление мочевины уреазой; аргиназа катализирует расщепление аргинина на орнитин и мочевину.
3. Групповая специфичность – катализ субстратов с общими структурными особенностями, т.е. при наличии определенной связи или химической группы:
- пепсин катализирует разрыв пептидной связи, образованной карбоксильными группами ароматических аминокислот (тромбинрасщепляет пептидную связь только между аргинином и глицином).
- например, наличие ОН-группы: алкогольдегидрогеназа окисляет до альдегидов одноатомные спирты (этанол, метанол, пропанол).
- Гексокиназа катализирует присоединение фосфатной группы к ряду шестиуглеродных сахаров: глюкозе, маннозе, фруктозе, галактозе и др.
4. Двойственная специфичность– фермент взаимодействует с резко различающимися по структуре субстратами. Например, ксантиноксидаза окисляет не только гипоксантин и ксантин, но и альдегиды.
Механизмы катализа
1.Кислотно-основной катализ.2.Ковалентный катализ
Доноры | Акцепторы |
-СООН -NH3+ -SH | -СОО- -NH2 -S- |
1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.
С2Н5ОН + NAD+ → СН3-СОН + NADH + H+
Механизм кислотно-основного катализа на примере алкогольдегидрогеназы печени. I - молекула этилового спирта имеет центр связывания, обеспечивающий гидрофобное взаимодействие активного центра и метильной группы спирта; II - положительно заряженный атом цинка способствует отщеплению протона от спиртовой группы этанола с образованием отрицательно заряженного атома кислорода. Отрицательный заряд перераспределяется между атомом кислорода и соседним атомом водорода, который затем в виде гидритиона переносится на четвёртый углеродный атом никотинамида кофермента NAD+; III - в результате формируется восстановленная форма NADH и уксусный альдегид.
2. Ковалентный катализ – наиболее показателен и лучше изучен - ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.
Нуклеофильный механизм (воздействующий на «+»), т.е. в активном центре фермента находятся активные отрицательно заряженные группировки, например: R-COO- (в Glu, Asp), R-OH (Ser), R-SH (Cys). Они влияют на положительные заряды субстрата, атакуют его, делают неустойчивым, поляризуют.
Электрофильный механизм - в активном центре фермента находятся положительные группы, чаще Mg2+, Mn2+, NH4+. Эти группы воздействуют на электроны в субстрате, дестабилизируют его, превращают в продукт.
Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин - ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Термин "сериновые протеазы" связан с тем, что аминокислотный остаток серина входит в состав активного центра всех этих ферментов и участвует непосредственно в катализе. Механизм ковалентного катализа на примере химотрипсина, осуществляющего гидролиз пептидных связей при переваривании белков в двенадцатиперстной кишке. Субстратами химотрипсина служат пептиды, содержащие аминокислоты с ароматическими и циклическими гидрофобными радикалами (Фен, Тир, Три), что указывает на участие гидрофобных сил в формировании фермент-субстратного комплекса. Радикалы Асп102, Гис57 и Сер195 участвуют непосредственно в акте катализа. Вследствие нуклеофильной атаки пептидной связи субстрата происходит разрыв этой связи с образованием ковалентно-модифицированного серина - ацил-химотрипсина. Другой пептидный фрагмент высвобождается в результате разрыва водородной связи между пептидным фрагментом и Гис57 активного центра химотрипсина. Заключительный этап гидролиза пептидной связи белков - деацилирование химотрипсина в присутствии молекулы воды с высвобождением второго фрагмента гидролизуемого белка и исходной формы фермента.