Влияние легирующих элементов на структуру и свойства сталей
Легирование - это введение в состав стали элементов, оказывающих полезное влияние на ее структурное состояние и свойства. Легирующими считают любые компоненты, введенные в сталь, кроме основных - железа и углерода, если они не являются примесями. Как правило, содержание примеси в составе стали ограничивается верхними пределами. Легирующими компонентами могут быть: хром, никель, молибден, вольфрам, ванадий и др.
Примесями в первую очередь являются: сера, фосфор, кислород, водород и др., т.е. такие элементы, которые оказывают вредное влияние на свойства сталей. Примесями могут считаться и такие элементы, как медь, никель, хром (если они не предусматриваются марочным составом стали, и их содержание ограничивается по верхнему пределу с указанием "не более"). Кремний и марганец вводят во все стали в качестве технологических добавок, и легирующими элементами не считаются, если их содержание не превышает нескольких десятых долей процента. Если они вводятся в сталь в количествах, превышающих норматив для технологической добавки (кремния - более 0,4-0,5%, марганца - выше 0,8%), то они также являются легирующими элементами.
Влияние легирующих элементов на фазовый состав сталей
Железу свойственны два полиморфных (аллотропических) превращения при температурах 911 и 1392 ºС. В соответствии с диаграммой железо-углерод (глава 4), углерод повышает температуру высокотемпературного полиморфного превращения (линия NI) и понижает температуру нижней критической точки (линия GS), расширяя область γ-твердого раствора (аустенита).
Все легирующие компоненты разделяются на две группы: расширяющие или сужающие область аустенита (рисунок 6.1). К элементам, расширяющим γ-область, и понижающим критическую точку Ас3, относятся: Mn, Co, Ni, Cu. Сужают аустенитную γ-область и повышают критическую точку Ас3: Si, Al, Cr, Mo, W, V, Ti. При большом содержании компонентов, расширяющих γ-область (рисунок 6.1, а), температура полиморфного превращения может снизиться ниже комнатной. В этом случае равновесной фазовой составляющей сталей становится аустенит (γ-фаза), и такие стали называют аустенитными.
Рисунок 6.1. Схема преобразования диаграмм фазового равновесия в связи с влиянием легирующих элементов на температуру полиморфных превращений железа |
При высоком содержании элементов α-стабилизаторов стабильной фазой в широком интервале концентраций становится α-фаза. Стали с такой структурой называют ферритными.
Легирующие элементы растворяются в α- и γ-железе, образуют, соответственно, легированный феррит и легированный аустенит. Все легирующие элементы, в отличие от углерода, образуют твердые растворы замещения.
Растворенные в аустените, все легирующие элементы понижают содержание углерода в эвтектоиде. Причем почти все легирующие элементы, за исключением никеля и марганца, повышает температуру эвтектоидного превращения (рисунок 6.2).
При растворении атомов легирующих компонентов искажается решетка железа, усиливаются межатомные связи, существенно повышается прочность твердых растворов практически без снижения вязкости. Это благоприятно сказывается на всем комплексе механических свойств сталей как в отожженном состоянии, так и, особенно, после упрочняющей термической обработки (рисунок 6.3). Практически все легирующие элементы повышают твердость феррита (а). Ударная вязкость изменяется неоднозначно (б). Никель, хром и до некоторой степени марганец одновременно с повышением твердости феррита увеличивают и его ударную вязкость, тем самым улучшая весь комплекс свойств.
Рисунок 6.2. Влияние легирующих элементов на положение эвтектоидной точки на диаграмме железо-углерод: а - на содержание углерода в эвтектоиде; б - на температуру эвтектоидного превращения |
Рисунок 6.3. Влияние легирующих элементов на свойства феррита: а - твердость; б - ударная вязкость |
При дальнейшем увеличении содержании никеля, хрома и марганца, а также при любых содержаниях молибдена, вольфрама и кремния ударная вязкость феррита уменьшается.
Все легирующие элементы (за исключением кобальта), растворенные в твердом растворе - аустените, при переохлаждении с высоких температур увеличивают устойчивость его к распаду, смещая вправо С-образные линии диаграмм изотермического распада (глава 7). Это очень сильно уменьшает критическую скорость закалки, позволяет проводить закалку легированных сталей в масле или, даже на воздухе. Это также снижает опасность образования закалочных трещин, уменьшает коробление изделий и увеличивает прокаливаемость сталей. Комплексное легирование несколькими элементами (Cr, Ni, Mo, W, V) в количестве 5 - 10% позволяет создавать стали с практически сквозной прокаливаемостью даже для очень крупных изделий.
Растворенные в переохлажденном аустените, легирующие элементы (кроме кобальта) понижают точки начала и конца мартенситного превращения (рисунок 6.4). Наиболее сильно влияют на положение мартенситных точек марганец, хром и никель.
Рисунок 6.4. Влияние легирующих элементов на температуру мартенситного превращения (а) и количество остаточного аустенита (б) для сталей, содержащих 1% С |
Этим объясняется то, что основные стали аустенитного класса содержат эти элементы. Примером такой высокомарганцевой стали является высокоизносостойкая аустенитная сталь Гадфильда (110Г13Л) с 13% Mn. После закалки с высоких температур (1050 - 1100 ˚С) в воде эта сталь имеет аустенитную структуру, а при ударах в поверхностных слоях изделия (например, зуба ковша экскаватора) происходит образование кристаллов мартенсита деформации, что обеспечивает высокую ударно-абразивную стойкость.
Другим примером такого легирования являются аустенитные хромо-никелевые нержавеющие стали типа 08Х18Н10Т, которые после закалки приобретают чисто аустенитную структуру, что обеспечивает важнейшее свойство таких сталей - высокую коррозионную стойкость.
Легирующие компоненты в сталях проявляют различное сродство к углероду, что существенно влияет на их фазовый состав. Малое сродство к углероду проявляют Si, Ni, Co, Cu, Al. Эти элементы, хотя и могут образовывать карбиды при взаимодействии с углеродом, но в сталях в присутствии железа такие карбиды не образуются.
Компоненты, имеющие повышенное сродство к углероду, образуют в стали карбиды. Чем выше сродство легирующего элемента к углероду, тем выше устойчивость карбидов в стали при нагреве. Эти компоненты в порядке увеличения сродства к углероду и, следовательно, в порядке повышения устойчивости карбидов в стали, можно расположить в следующей последовательности: Mn, Cr, Mo, W, Nb, V, Zr, Ti. Наименее устойчивы и легче всего растворяются в аустените при нагреве карбиды марганца, затем хрома и молибдена. Практически нерастворимыми являются карбиды титана и циркония. Именно эти элементы и вводят в сталь для измельчения размера зерна.
При малом содержании Mn, Cr, Mo, W растворяются в цементите, образуя легированный цементит: (Fe,Mn)3C , (Fe,Cr)3C. При более высоком содержании этих легирующих элементов могут образовываться и самостоятельные карбиды: Mn3C, Cr7C3, Cr23C7, Fe3W3C и др. Более сильные карбидообразующие элементы (Nb, V, Zr, Ti) в цементите не растворяются и образуют только самостоятельные карбиды.
Карбиды, присутствующие в стали, имеют очень большую твердость, упрочняют сталь, делают ее износостойкой. Поэтому карбидообразующие элементы являются обязательными компонентами в инструментальных сталях. Количество таких элементов в инструментальных быстрорежущих сталях может достигать 20 - 25% по массе.
Особенности термической обработки легированных сталей
Легированные стали характеризуются пониженной теплопроводностью, в связи с чем при нагреве и охлаждении в ней могут возникать более значительные по сравнению с углеродистой сталью градиенты температур по сечению, а, следовательно, и более высокий уровень термических напряжений. Учитывая, что легированные стали более хрупки, по сравнению с углеродистой, эти напряжения оказываются более опасными в отношении образования трещин. Поэтому, нагрев легированной стали при отжиге, под закалку должен проводиться более медленно или с применением ступенчатых режимов.
Легирующие элементы сами трудно диффундируют и затрудняют диффузию углерода в стали. Поэтому для полного завершения фазовых превращений, развивающихся по диффузионным механизмам, а также процессов гомогенизации твердых растворов, легированные стали требуют более длительных выдержек при нагреве под закалку, при отпуске и отжиге. По этой же причине при термической обработке оказывается необходимым и возможным применение более высоких температур нагрева, как при закалке, так и при отпуске. При одной и той же температуре отпуска легированная сталь остается более твердой по сравнению с углеродистой сталью.
При закалке быстрорежущих сталей температура нагрева может достигать значений 1200 - 1280 ºС, что на 350-400 превышает критические точки стали. Несмотря на это, быстрорежущие стали остаются после такой закалки одними из самых мелкозернистых. Способствует получению сверхмелкозернистых структур быстрорежущих сталей большое количество устойчивых карбидов, сохраняющихся в сталях вплоть до температур плавления. Еще одной особенностью термической обработки быстрорежущей стали является необходимость проведения многократного (2-3-х- кратного) отпуска при температуре 550-570ºС, в результате чего достигается уменьшение количества остаточного аустенита с 25-35% до 2-3% и появление вторичной твердости стали, превышающей твердость закаленной стали (HRC = 63-65). Отпуск при таких температурах обеспечивает сохранение свойств закаленной стали при высокотемпературных нагревах до 600 ºС, что делает ее теплостойкой (красностойкой).