Факторы, влияющие на скорость химических реакций
1. Влияние концентрации веществ.
Для протекания химической реакции необходимо соударение реагирующих частиц межу собой. Поэтому при увеличение концентрации веществ возрастает вероятность их столкновения, а следовательно, увеличивается скорость химической реакции.
Количественная зависимость скорости реакции от концентрации описывается законом действия масс: «Скорость прямой реакции прямопропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов в уравнении реакции”.
Так, для условной реакции aA + bB = cC + dD скорость прямой реакции , а скорость обратной реакции , где [A], [B], [C] и [D] – концентрации веществ; a, b, c и d – коэффициенты в уравнении реакции; k1 и k2 – константы скорости реакций.
Константа скорости прямой реакции k1 численно равна скорости реакции при концентрациях реагирующих веществ, равных единице. Она не зависит от концентраций веществ, а зависит от их природы и температуры.
В случае протекания гетерогенных реакций в кинетическом уравнении будут учитываться концентрации только тех веществ, которые находятся в жидком или газообразном состоянии. Концентрация твердых веществ величина постоянная, и она входит в значение константы скорости.
Так, для реакции S (кр.) + Н2 (г) = Н2S (г) скорость прямой реакции определяется следующим уравнением: .
Пример. Как изменится скорость прямой реакций при увеличении концентрации оксида серы (IV) в 4 раза?
2SO2 + O2 = 2SO3,
- до изменения концентрации SO2;
- после изменения концентрации SO2;
Следовательно, скорость прямой реакции увеличивается в 16 раз.
2. Природа реагирующих веществ.
Химические реакции протекают, когда происходит, соударение реагирующих частиц. Однако не каждое соударение приводит к образованию нового химического соединения. Для того, чтобы произошло химическое превращение, необходимо, чтобы частицы реагирующих веществ обладали энергией, достаточной на разрыв старых связей и образования новых. Избыточная энергия, которой должны обладать молекулы, чтобы при их столкновении образовалось новое соединение, называется энергией активации. Каждой химической реакции соответствует своя энергия активации, ее значение определяется природой реагирующих веществ. Чем меньше ее величина, тем быстрее протекает химическое превращение, и наоборот.
3. Влияние температуры.
При увеличении температуры энергия молекул увеличивается, т.е. возрастает число молекул, энергия которых равна или превышает энергию активации реакции. Такие молекулы называются активными.Следовательно, с ростом температуры увеличивается скорость химической реакции.
Количественная связь температуры и скорости химической реакции описывается правилом Вант-Гоффа.
При изменении температуры на каждые десять градусов скорость химической реакции изменяется в 2-4 раза.
Это правило выражается следующим соотношением: ,
где - скорость реакции при начальной температуре t1,
- скорость реакции при конечной температуре t2,
γ – температурный коэффициент реакции.
4. Влияние катализатора.
Катализатор –это вещество, которое влияет на скорость химической реакции, но само при этом не расходуется. Катализаторы, ускоряющие химические процессы, называются положительными.В присутствии катализатора реакции протекают по новому пути с меньшей энергией активации, что и приводит к увеличению скорости химической реакции.
Процесс с участием катализатора называются катализом. Катализ может быть гомогенным и гетерогенным.
Химическое равновесие
Реакции, протекающие только в одном направлении до тех пор, пока не израсходуется одно из реагирующих веществ, называются необратимыми. Например, реакция разложения нитрата аммония является необратимой, т.к. попытки получить нитрат аммония при взаимодействии воды и оксида азота (I) не привели к положительному результату: NH4NO3 N2O + 2H2O. Реакции, способные протекать в двух направлениях, называются обратимыми. Обратимых реакций больше, чем необратимых.
Примером обратимой реакции может служить процесс взаимодействия йода с водородом: Н2 + J2 2HJ. По мере протекания прямой реакции расходуются исходные реагирующие вещества, и уменьшается скорость прямой реакции, но увеличивается концентрация продукта реакции HJ и, следовательно, увеличивается скорость обратной реакции. Через некоторый промежуток времени скорость образования HJ становится равной скорости его разложения, т.е. наступает химическое равновесие. Химическое равновесие – это динамическое состояние, при котором происходят непрерывное образование и распад молекул с равными скоростями, т.е. Vпр. = Vобр.
В общем виде химическая реакция может быть представлена уравнениями: аА + bB = cC + dD; Vпр = k1 [A]a[B]b; Vобр. = k2 [С] с[D]d.
Так как при химическом равновесии Vпр. = Vобр., следовательно k1 [A]a[B]b= k2 [С]с[D]d. Для преобразования делим обе части равенства на выражение k2 [С] с[D]d: , получаем .
Величина Кр как отношение постоянных величин есть величина постоянная, называемая константой равновесия. Концентрации реагентов при установившемся равновесии называются равновесными концентрациями.
Например: 2СO + O2 = 2СO2, .
Концентрации реагирующих веществ не влияют на константу равновесия, так как константы скорости реакций, отношением которых она является, не зависят от концентрации. Но k1 и k2 зависят от температуры и меняются с изменением температуры по-разному, поэтому Кр зависит от температуры.
При неизменных внешних условиях состояние (положение) равновесия сохраняется сколь угодно долго. При изменении внешних условий положение равновесия изменяется, так как нарушается равенство Vпр. = Vобр. Через некоторое время после изменения условий установится новое равновесие, но при других равновесных концентрациях. Переход системы из одного равновесного состояния в другое называется смещением равновесия(сдвигом равновесия).
Закономерное влияние внешних условий (концентраций реагентов, температуры, давления) на положение равновесия обратимых химических реакций было установлено в 1847 году французским ученым Ле-Шателье. Принцип Ле-Шательезвучит следующим образом: “Если на систему, находящуюся в равновесном состоянии, оказать какое-либо внешние воздействие (изменение температуры, давления, концентрации), то равновесие в системе сместиться в сторону той реакции, которая сводит это воздействие к минимуму”
1. При увеличении концентрации какого-либо вещества, участвующего в равновесии, равновесие смещается в сторону расхода данного вещества, а при уменьшении концентрации – в сторону его образования.
Например, в системе 2СO + O2 = 2СO2 при увеличении концентрации кислорода равновесие сместится в сторону его расходования, т.е. вправо, в сторону образования СО2.
2. При увеличении давления путем сжатия системы равновесие смещается в сторону меньшего числа молекул газа, т.е. в сторону понижения давления, а при уменьшении давления равновесие сместится в сторону большего числа молекул газа, т.е. в сторону увеличения давления.
Например, в системе 2СO + O2 = 2СO2 при увеличении давления равновесие сместится в сторону меньшего числа молекул газа, т.е. вправо, в сторону образования СО2, так как в левой части три молекулы газа, а в левой всего две. ся в равновесном состоянии, оказать какое-либо внешние воздействие ( на положение равновесия обратимых химических реакций был
Но есть равновесные системы, в которых давление не влияет на смещение равновесия. Например, в системе Н2 + J2 2HJ при изменении давления равновесие смещаться не будет, так как в левой и правой частях находится по две молекулы газа.
3. При увеличении температуры равновесие смещается в направлении эндотермической реакции, а при уменьшении – в направлении экзотермической реакции.
Экзотермической реакций называется реакция, идущая с выделением тепла (ΔН<0), а реакция, идущая с поглощением тепла называется эндотермической(ΔН>0).
Например: 2Н2 + О2 2Н2О, ΔН = -484,9 кДж.
При увеличении температуры в данной системе равновесие сместится влево, в сторону исходных реагирующих веществ, так как обратная реакция является эндотермической.
Принцип Ле-Шателье подтверждается и распространяется не только на химические, но и на различные физико-химические равновесные процессы. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация и растворение, происходит в соответствии с данным принципом.
Растворы
Растворы имеют огромное значение в минеральной и органической жизни Земли, в науке, технике, строительстве.
Раствор - однородная в фазовом отношении сложная система переменного состава.
Т в е р д ы е (минералы, сплавы) | ||
Растворы | ||
Ж и д к и е (раствор NaCl в воде) | ||
Г а з о о б р а з н ы е (воздух – 21 % О2 + 78 % N2 + 1 % др. газов) | ||
Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкость) и растворенного вещества. Например: раствор газа в жидкости – кислород в воде; раствор твердого вещества в жидкости – сахар в воде; раствор жидкости в жидкости – серная кислота в воде. В случае смеси жидкостей растворителем является жидкость, которая содержится в большем количестве. Кроме того, жидкими растворами являются и те, в которых растворитель не вода, а другая жидкость (спирт, ацетон, толуол, керосин и др.).
Способность вещества растворяться всегда ограничена, исключение составляют жидкости, смешивающиеся друг с другом в разных соотношениях, например вода и этиловый спирт. Количество вещества, которое может раствориться при данной температуре в определенном количестве растворителя, называется растворимостью (S). Единицы измерения растворимости г или моль растворенного вещества в 1 дм3 растворителя; г растворенного вещества в 100 г растворителя. Растворимость разных веществ в воде при постоянной температуре различается весьма сильно. Хорошо растворимыми считаются вещества, которые растворяются в воде более 10 г/л. Слабо растворимые – растворяются в воде в диапазоне от 0,01 до 10 г/л. Практически нерастворимые – растворяются в воде менее 0,01 г/л. Раствор, в котором при данной температуре вещество больше растворяться не может, называется насыщенным (С= S, здесь С – концентрация растворенного вещества). Ненасыщенный раствор содержит меньше растворенного вещества, чем насыщенный (С< S) при данной температуре; п е р е с ы щ е н н ы й раствор содержит растворенного вещества больше, чем насыщенный (С > S). Растворимость веществ обычно зависит от температуры. Растворимость большинства твердых и жидких веществ с повышением температуры увеличивается, газообразных - уменьшается.
Растворение - сложный физико-химическийц процесс. С одной стороны, растворяющееся вещество удаляется с поверхности кристалла и равномерно распреде- ляется по объему растворителя - физический процесс (диффузия). Скорость диффузии оказывает значительное влияние на скорость растворения. С другой - частицы растворенного вещества и растворителя взаимодействуют друг с другом - химический процесс (сольватация). Если растворителем является вода, то говорят о гидратации растворенного вещества. Гидратная оболочка довольно прочно связана с частицами растворенного вещества и при его выделении из раствора входит в состав кристаллов.
CuSO4 + H2O ¾¾¾¾¾® синий р-р ¾¾¾¾¾® CuSO4 5H2O
растворение выпаривание
CuSO4 - вещество белого цвета; CuSO4 5H2O – кристаллогидрат меди - вещество синего цвета. Вода, входящая в состав кристаллогидрата, называется кристаллизационной.
Помимо наличия кристаллогидратов, доказательством того, что растворение хими- ческий процесс, является тепловой эффект при растворении. Например, если поместить в стакан с водой твердую соль NH4NO3, то в результате растворения последней темпе- ратура раствора понижается так сильно, что стакан примерзает к поверхности,на которой стоит, если она смочена водой; при добавлении H2 SO4 в стакан с водой последний заметно нагревается.
Установлено, что тепло поглощенное при растворении (отрицательный тепловойэффект ) затрачивается на разрушение кристаллической решетки и диффузия раство- ряющегося вещества на весь объем раствора (физический
процесс). Причиной положительного теплового эффектаслужит образование сольватов (химический процесс).
Общий тепловой эффект растворения - алгебраическая сумма положительного и отрицательного тепловых эффектов. В зависимости от природы растворяемого вещества соотношение положительного и отрицательного эффектов при растворении меняется и, следовательно, меняются величина и знак суммарного теплового эффекта.
Любой растворитель характеризуется параметрами: давление насыщенного пара, осмотическое давление, температуры кипения и замерзания. Для разбавленных растворов неэлектролитов аналогичные свойства изменяются пропорционально концентрации растворенного вещества и описываются законами Ф. Рауля и Я. Вант-Гоффа.
I закон Рауля
Давление насыщенного пара растворителя над раствором всегда меньше, чем над чистым растворителем. При этом чем больше концентрация растворенного вещества, тем больше понижается давление пара над раствором.
P = Po× co ,
где co – молярная доля растворителя в растворе; Р и Ро - соответственно давление пара растворителя над раствором и растворителем.
II закон Рауля
Температура кипения раствора Т2 выше температуры кипения чистого растворителя Т1 ( DТкип = Т2 - Т1). При этом чем выше концентрация раствора, тем выше температура кипения.
DТкип = Е×С .
Растворы замерзают при более низкой температуре, чем чистый растворитель. При этом, чем выше концентрация растворённого вещества, тем ниже температура замерзания
DТзам = К×С,
где С – концентрация раствора; Е – эбулиоскопическая постоянная, которая равна повышению температуры кипения при растворении 1 моля вещества в 1 кг растворителя; К – криоскопическая постоянная, которая численно равна понижению температуры замерзания при растворении 1 моль вещества в 1 кг растворителя.
Закон Вант-Гоффа
Осмотическое давление равно такому давлению, которое нужно приложить к раствору для предотвращения проникновения в него растворителя
p = С× R×T ,
где p - осмотическое давление; R – газовая постоянная, равная 8,314 Дж/К×моль;
Т – температура, К.