Атомы, химия, единицы измерения

Несмотря на то что не всегда просто установить прямые связи между прочностью материалов и законами классической физики и химии, в конечном счете именно эти науки составляют фундамент материаловедения. Поэтому для тех, кто мог позабыть кое-что из школьной программы, в конце книги имеется приложение, где кратко изложены основные сведения, без знания которых трудно следить за дальнейшими рассуждениями. Однако для понимания материаловедения не в меньшей степени, чем знание законов химии и физики, необходимо правильное представление о размерах и масштабе. Иными словами, законы науки дают правила игры, но размеры шахматной доски, то есть те масштабы, в которых разыгрываются игры в природе и технике, постоянно и почти невообразимо изменяются. Поэтому остановимся, хотя бы кратко, на вопросе о масштабах и единицах измерения.

Кельвин не раз повторял, что наука начинается с измерений. Но для того, чтобы измерять, нужны единицы измерения. Для измерения сравнительно больших величин мы будем использовать сантиметры и миллиметры, тонны, килограммы и граммы. Оперируя очень малыми величинами, мы обычно становимся более рациональны ми и обращаемся к малым единицам. А поскольку материаловедение часто имеет дело именно с малыми величинами, которые не используются в повседневной жизни, об этих малых единицах следует рассказать подробнее. Микрон (мкм) - 1/10000 см, то есть 1/1000 мм. Размер самой маленькой точки, которую можно увидеть невооруженным глазом, - около 1/10 мм, то есть 100 мкм. А самый малый предмет, видимый с помощью обычного оптического микроскопа, как правило, меньше 0,5 мкм. На практике возможность видеть предмет в значительной степени зависит от условий освещения: так, в сильном луче света, проникающем в темную комнату, можно видеть невооруженным глазом частицы пыли размером в 10 мкм или даже меньше. Так как предел разрешения оптического микроскопа примерно равен одному микрону, микрон стал излюбленной единицей тех, кто в основном работает с этим микроскопом, в частности биологов.

Ангстрем (А) - 1/10000 мкм, или 1/100000000 см. Эта единица пользуется уважением тех, кто работает с электронным микроскопом, ее применяют для измерения атомов и молекул. С помощью современного электронного микроскопа можно рассмотреть (обычно в виде неясных пятен) частицы размером около 5 А. Это примерно в тысячу раз меньше того, что можно увидеть в лучшем оптическом микроскопе. Но и в этом случае разрешение сильно зависит от условий эксперимента.

Вероятно, здесь следует немного поговорить об атоме. Атомы - это то, из чего построены все вещества. Сами атомы состоят из очень малых и тяжелых ядер, окруженных облаком обращающихся вокруг них электронов, которые являются волнами, частицами или отрицательны ми зарядами электричества. Электроны несравненно меньше ядер атомов. Массы и размеры атомов различных веществ могут быть очень разными. Атомы можно представить себе в виде шариков с негладкой поверхностью диаметром, грубо говоря, около 2 А. По обыденным понятиям, это невообразимо малый размер, мы никогда не сможем увидеть отдельный атом с помощью обычного видимого света, хотя в массе своей атомы, конечно, являются перед нами в виде любого тела.

Здесь полезно напомнить, что наименьшая частица, которую можно видеть невооруженным глазом, содержит примерно 500000 атомов в поперечнике, а с помощью оптического микроскопа нам удается рассмотреть частичку с 2000 атомов в поперечнике. Электронный микроскоп позволяет увидеть расположение атомов в кристалле, которое напоминает построение солдат на параде; с помощью устройства, называемого ионным проектором, можно рассмотреть даже отдельные атомы - по крайней мере некие их туманные очертания. Однако даже при значительно лучшей разрешающей способности микроскопа (а со временем таковая, возможно, и будет достигнута) вряд ли нам удастся увидеть что-нибудь очень конкретное.

Наши рекомендации