Классическое определение вероятности. 1.На эк­за­мен вы­не­се­но 60 во­про­сов, Ан­дрей не вы­учил 3 из них

1.На эк­за­мен вы­не­се­но 60 во­про­сов, Ан­дрей не вы­учил 3 из них. Най­ди­те ве­ро­ят­ность того, что ему по­па­дет­ся вы­учен­ный во­прос.

2.В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 10 чер­ных, 2 жел­тых и 8 зе­ле­ных. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к за­каз­чи­це. Най­ди­те ве­ро­ят­ность того, что к ней при­е­дет зе­ле­ное такси.

3.На та­рел­ке 16 пи­рож­ков: 7 с рыбой, 5 с ва­ре­ньем и 4 с виш­ней. Юля на­у­гад вы­би­ра­ет один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с виш­ней.

4.В слу­чай­ном экс­пе­ри­мен­те бро­са­ют две иг­раль­ные кости. Най­ди­те ве­ро­ят­ность того, что в сумме вы­па­дет 8 очков. Ре­зуль­тат округ­ли­те до сотых.

5.В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.

6.В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 20 спортс­ме­нок: 8 из Рос­сии, 7 из США, осталь­ные — из Китая. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Китая.

7.В сред­нем из 1000 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 5 под­те­ка­ют. Най­ди­те ве­ро­ят­ность того, что один слу­чай­но вы­бран­ный для кон­тро­ля насос не под­те­ка­ет.

8.Фаб­ри­ка вы­пус­ка­ет сумки. В сред­нем на 100 ка­че­ствен­ных сумок при­хо­дит­ся во­семь сумок со скры­ты­ми де­фек­та­ми. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся ка­че­ствен­ной. Ре­зуль­тат округ­ли­те до сотых.

9.В со­рев­но­ва­ни­ях по тол­ка­нию ядра участ­ву­ют 4 спортс­ме­на из Фин­лян­дии, 7 спортс­ме­нов из Дании, 9 спортс­ме­нов из Шве­ции и 5 — из Нор­ве­гии. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, ко­то­рый вы­сту­па­ет по­след­ним, ока­жет­ся из Шве­ции.

10.На­уч­ная кон­фе­рен­ция про­во­дит­ся в 5 дней. Всего за­пла­ни­ро­ва­но 75 до­кла­дов — пер­вые три дня по 17 до­кла­дов, осталь­ные рас­пре­де­ле­ны по­ров­ну между чет­вер­тым и пятым днями. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что до­клад про­фес­со­ра М. ока­жет­ся за­пла­ни­ро­ван­ным на по­след­ний день кон­фе­рен­ции?

11.Кон­курс ис­пол­ни­те­лей про­во­дит­ся в 5 дней. Всего за­яв­ле­но 80 вы­ступ­ле­ний — по од­но­му от каж­дой стра­ны. В пер­вый день 8 вы­ступ­ле­ний, осталь­ные рас­пре­де­ле­ны по­ров­ну между остав­ши­ми­ся днями. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность, что вы­ступ­ле­ние пред­ста­ви­те­ля Рос­сии со­сто­ит­ся в тре­тий день кон­кур­са?

12.На се­ми­нар при­е­ха­ли 3 уче­ных из Нор­ве­гии, 3 из Рос­сии и 4 из Ис­па­нии. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад уче­но­го из Рос­сии.

13.Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по бад­мин­то­ну участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 26 бад­мин­то­ни­стов, среди ко­то­рых 10 участ­ни­ков из Рос­сии, в том числе Рус­лан Орлов. Най­ди­те ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии?

14.В сбор­ни­ке би­ле­тов по био­ло­гии всего 55 би­ле­тов, в 11 из них встре­ча­ет­ся во­прос по бо­та­ни­ке. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку до­ста­нет­ся во­прос по бо­та­ни­ке.

15.В сбор­ни­ке би­ле­тов по ма­те­ма­ти­ке всего 25 би­ле­тов, в 10 из них встре­ча­ет­ся во­прос по не­ра­вен­ствам. Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку не до­ста­нет­ся во­про­са по не­ра­вен­ствам.

16.На чем­пи­о­на­те по прыж­кам в воду вы­сту­па­ют 25 спортс­ме­нов, среди них 8 пры­гу­нов из Рос­сии и 9 пры­гу­нов из Па­раг­вая. По­ря­док вы­ступ­ле­ний опре­де­ля­ет­ся же­ребьёвкой. Най­ди­те ве­ро­ят­ность того, что ше­стым будет вы­сту­пать пры­гун из Па­раг­вая.

17.Вася, Петя, Коля и Лёша бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет Петя.

18.В чем­пи­о­на­те мира участ­ву­ют 16 ко­манд. С по­мо­щью жре­бия их нужно раз­де­лить на че­ты­ре груп­пы по че­ты­ре ко­ман­ды в каж­дой. В ящике впе­ре­меш­ку лежат кар­точ­ки с но­ме­ра­ми групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Ка­пи­та­ны ко­манд тянут по одной кар­точ­ке. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии ока­жет­ся во вто­рой груп­пе?

19.На кла­ви­а­ту­ре те­ле­фо­на 10 цифр, от 0 до 9. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но на­жа­тая цифра будет чётной?

20.Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ное на­ту­раль­ное число от 10 до 19 де­лит­ся на три?

21.В груп­пе ту­ри­стов 5 че­ло­век. С по­мо­щью жре­бия они вы­би­ра­ют двух че­ло­век, ко­то­рые долж­ны идти в село в ма­га­зин за про­дук­та­ми. Ту­рист А. хотел бы схо­дить в ма­га­зин, но он под­чи­ня­ет­ся жре­бию. Ка­ко­ва ве­ро­ят­ность того, что А. пойдёт в ма­га­зин?

22.Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Физик» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Физик» вы­иг­ра­ет жре­бий ровно два раза.

23.Иг­раль­ный кубик бро­са­ют два­жды. Сколь­ко эле­мен­тар­ных ис­хо­дов опыта бла­го­при­ят­ству­ют со­бы­тию «А = сумма очков равна 5»?

24.В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что в пер­вый раз вы­па­да­ет орёл, а во вто­рой — решка.

25.На рок-фе­сти­ва­ле вы­сту­па­ют груп­пы — по одной от каж­дой из за­яв­лен­ных стран. По­ря­док вы­ступ­ле­ния опре­де­ля­ет­ся жре­би­ем. Ка­ко­ва ве­ро­ят­ность того, что груп­па из Дании будет вы­сту­пать после груп­пы из Шве­ции и после груп­пы из Нор­ве­гии? Ре­зуль­тат округ­ли­те до сотых.

26.В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

27.На борту самолёта 12 мест рядом с за­пас­ны­ми вы­хо­да­ми и 18 мест за пе­ре­го­род­ка­ми, раз­де­ля­ю­щи­ми са­ло­ны. Осталь­ные места не­удоб­ны для пас­са­жи­ра вы­со­ко­го роста. Пас­са­жир В. вы­со­ко­го роста. Най­ди­те ве­ро­ят­ность того, что на ре­ги­стра­ции при слу­чай­ном вы­бо­ре места пас­са­жи­ру В. до­ста­нет­ся удоб­ное место, если всего в самолёте 300 мест.

28.На олим­пиа­де в вузе участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух по 120 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 250 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

29.В клас­се 26 че­ло­век, среди них два близ­не­ца — Ан­дрей и Сер­гей. Класс слу­чай­ным об­ра­зом делят на две груп­пы по 13 че­ло­век в каж­дой. Най­ди­те ве­ро­ят­ность того, что Ан­дрей и Сер­гей ока­жут­ся в одной груп­пе.

30.В фирме такси в на­ли­чии 50 лег­ко­вых ав­то­мо­би­лей; 27 из них чёрные с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные — жёлтые с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.

31.В груп­пе ту­ри­стов 30 че­ло­век. Их вер­толётом в не­сколь­ко приёмов за­бра­сы­ва­ют в труд­но­до­ступ­ный район по 6 че­ло­век за рейс. По­ря­док, в ко­то­ром вер­толёт пе­ре­во­зит ту­ри­стов, слу­ча­ен. Най­ди­те ве­ро­ят­ность того, что ту­рист П. по­ле­тит пер­вым рей­сом вер­толёта.

32.Ве­ро­ят­ность того, что новый DVD-про­иг­ры­ва­тель в те­че­ние года по­сту­пит в га­ран­тий­ный ре­монт, равна 0,045. В не­ко­то­ром го­ро­де из 1000 про­дан­ных DVD-про­иг­ры­ва­те­лей в те­че­ние года в га­ран­тий­ную ма­стер­скую по­сту­пи­ла 51 штука. На сколь­ко от­ли­ча­ет­ся ча­сто­та со­бы­тия «га­ран­тий­ный ре­монт» от его ве­ро­ят­но­сти в этом го­ро­де?

33.В кар­ма­не у Миши было че­ты­ре кон­фе­ты — «Гри­льяж», «Бе­лоч­ка», «Ко­ров­ка» и «Ла­сточ­ка», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Миша слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Гри­льяж».

34.Ме­ха­ни­че­ские часы с две­на­дца­ти­ча­со­вым ци­фер­бла­том в какой-то мо­мент сло­ма­лись и пе­ре­ста­ли хо­дить. Най­ди­те ве­ро­ят­ность того, что ча­со­вая стрел­ка за­сты­ла, до­стиг­нув от­мет­ки 10, но не дойдя до от­мет­ки 1 час.

35.Из мно­же­ства на­ту­раль­ных чисел от 25 до 39 на­уда­чу вы­би­ра­ют одно число. Ка­ко­ва ве­ро­ят­ность того, что оно де­лит­ся на 5?

36.В чем­пи­о­на­те по прыж­кам в воду участ­ву­ют 35 спортс­ме­нов: 7 из Рос­сии, 12 из Китая, 9 из Япо­нии и 7 из США. По­ря­док, в ко­то­ром вы­сту­па­ют спортс­ме­ны, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен, вы­сту­па­ю­щий пер­вым, ока­жет­ся пред­ста­ви­те­лем Рос­сии.

37.На та­рел­ке лежат оди­на­ко­вые на вид пи­рож­ки: 4 с мясом, 8 с ка­пу­стой и 3 с виш­ней. Петя вы­би­ра­ет на­у­гад один пи­ро­жок. Най­ди­те ве­ро­ят­ность того, что этот пи­ро­жок ока­жет­ся с виш­ней.

38.В ящике лежат оди­на­ко­вые на вид ручки: 1 крас­ная, 8 чер­ных и 6 синих. Вася вы­би­ра­ет на­у­гад одну ручку. Най­ди­те ве­ро­ят­ность того, что эта ручка ока­жет­ся синей.

39.В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 28 спортс­ме­нок: 8 из Фран­ции, 13 из Ве­ли­ко­бри­та­нии, осталь­ные — из Гер­ма­нии. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Гер­ма­нии.

40.В сбор­ни­ке би­ле­тов по ис­то­рии всего 25 би­ле­тов, в 18 из них встре­ча­ет­ся во­прос по теме «Ве­ли­кая Оте­че­ствен­ная война». Най­ди­те ве­ро­ят­ность того, что в слу­чай­но вы­бран­ном на эк­за­ме­не би­ле­те школь­ни­ку до­ста­нет­ся во­прос по теме «Ве­ли­кая Оте­че­ствен­ная война».

41.В чем­пи­о­на­те по гим­на­сти­ке участ­ву­ют 65 спортс­ме­нок: 18 из Ар­ген­ти­ны, 21 из Бра­зи­лии, осталь­ные — из Па­раг­вая. По­ря­док, в ко­то­ром вы­сту­па­ют гим­наст­ки, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен­ка, вы­сту­па­ю­щая пер­вой, ока­жет­ся из Па­раг­вая.

42.На олим­пиа­де по рус­ско­му языку участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух по 130 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 400 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

43.В ко­роб­ке впе­ре­меш­ку лежат чай­ные па­ке­ти­ки с чёрным и зелёным чаем, оди­на­ко­вые на вид, причём па­ке­ти­ков с чёрным чаем в 19 раз боль­ше, чем па­ке­ти­ков с зелёным. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный из этой ко­роб­ки па­ке­тик ока­жет­ся па­ке­ти­ком с зелёным чаем.

44.Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ное трёхзнач­ное число де­лит­ся на 49.

45.В ящике на­хо­дят­ся чёрные и белые шары, причём чёрных в 4 раза боль­ше, чем белых. Из ящика слу­чай­ным об­ра­зом до­ста­ли один шар. Най­ди­те ве­ро­ят­ность того, что он будет белым.

46.В ящике на­хо­дят­ся чёрные и белые шары, причём чёрных в 3 раза боль­ше, чем белых. Из ящика слу­чай­ным об­ра­зом до­ста­ли один шар. Най­ди­те ве­ро­ят­ность того, что он будет белым.

47.Ве­ро­ят­ность того, что новая ша­ри­ко­вая ручка пишет плохо или вовсе не пишет, равна 0,21. По­ку­па­тель, не глядя, берёт одну ша­ри­ко­вую ручку из ко­роб­ки. Най­ди­те ве­ро­ят­ность того, что эта ручка пишет хо­ро­шо.

48.На олим­пиа­де по рус­ско­му языку участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух ауди­то­ри­ях са­жа­ют по 130 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 400 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

49.На олим­пиа­де по рус­ско­му языку участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух ауди­то­ри­ях са­жа­ют по 110 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 400 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

50.На олим­пиа­де по химии участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух ауди­то­ри­ях са­жа­ют по 140 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 400 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

51.На олим­пиа­де по об­ще­ст­во­зна­нию участ­ни­ков рас­са­жи­ва­ют по трём ауди­то­ри­ям. В пер­вых двух ауди­то­ри­ях са­жа­ют по 140 че­ло­век, остав­ших­ся про­во­дят в за­пас­ную ауди­то­рию в дру­гом кор­пу­се. При подсчёте вы­яс­ни­лось, что всего было 350 участ­ни­ков. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный участ­ник писал олим­пи­а­ду в за­пас­ной ауди­то­рии.

52.В сред­нем из 150 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 6 под­те­ка­ет. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный для кон­тро­ля насос под­те­ка­ет.

53.В сред­нем из 300 са­до­вых на­со­сов, по­сту­пив­ших в про­да­жу, 60 под­те­ка­ет. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ный для кон­тро­ля насос под­те­ка­ет.

54.По­ме­ще­ние осве­ща­ет­ся фонарём с двумя лам­па­ми. Ве­ро­ят­ность пе­ре­го­ра­ния одной лампы в те­че­ние года равна 0,3. Най­ди­те ве­ро­ят­ность того, что в те­че­ние года обе лампы пе­ре­го­рят.

55.По­ме­ще­ние осве­ща­ет­ся фонарём с двумя лам­па­ми. Ве­ро­ят­ность пе­ре­го­ра­ния одной лампы в те­че­ние года равна 0,15. Най­ди­те ве­ро­ят­ность того, что в те­че­ние года обе лампы пе­ре­го­рят.

56.Ве­ро­ят­ность того, что стек­ло мо­биль­но­го те­ле­фо­на разобьётся при па­де­нии на твёрдую по­верх­ность, равна 0,85. Най­ди­те ве­ро­ят­ность того, что при па­де­нии на твёрдую по­верх­ность стек­ло мо­биль­но­го те­ле­фо­на не разобьётся

57.Ве­ро­ят­ность того, что стек­ло мо­биль­но­го те­ле­фо­на разобьётся при па­де­нии на твёрдую по­верх­ность, равна 0,93. Най­ди­те ве­ро­ят­ность того, что при па­де­нии на твёрдую по­верх­ность стек­ло мо­биль­но­го те­ле­фо­на не разобьётся

58.На се­ми­нар при­е­ха­ли 6 учёных из Нор­ве­гии, 5 из Рос­сии и 9 из Ис­па­нии. Каж­дый учёный под­го­то­вил один до­клад. По­ря­док до­кла­дов опре­де­ля­ет­ся слу­чай­ным об­ра­зом. Най­ди­те ве­ро­ят­ность того, что вось­мым ока­жет­ся до­клад учёного из Рос­сии.

Наши рекомендации