Использование шлаков и зол в производстве вяжущих веществ
Золы и шлаки ТЭЦ при правильном и эффективном их использовании представляют собой огромное богатство и источник расширения сырьевых ресурсов различных отраслей промышленности, в первую очередь промышленности строительных материалов. В нашей стране выполнены большие научно-исследовательские работы и накоплен значительный опыт по использованию золошлаковых отходов электростанций.
Большой практический интерес представляет исследование возможностей массового использования золошлаковых смесей в качестве заполнителей в бетоны различного назначения. Это обусловлено как зерновым и химическим составом, так и физико-механическими характеристиками отходов ТЭЦ. Зерновой состав смеси соответствует рекомендуемым составам песков для бетонов, модуль крупности составляет 3,42, что позволяет отнести его по существующей классификации к крупным пескам. По химическому составу материал на 80 % состоит из кремнезема, глинозема и гематита. Результаты испытаний на прочность золошлаковых бетонов естественного твердения, подвергнутых тепловлажностной обработке, показывают, что расход цемента для получения требуемой прочности не превышает нормы.
Для изучения изменения прочности золошлакобетона во времени были проведены исследования бетонов на основе золошлаковых смесей с золоотвалов Беловской ГРЭС, Кемеровской ГРЭС, Новокемеровской ТЭЦ. Бетонная смесь готовилась в трех видах смесителей: турбулентном, гравитационном, принудительного перемешивания. Образцы-кубики 100x100x100 мм подвергались термообработке по режиму 3,5 + 8 + 2 ч. при температуре 90° С, а часть образцов твердело в нормальных условиях. Изменение прочности бетона во времени определяли по результатам испытания образцов в возрасте 1,7, 14, 28, 180 и 1340 сут. Анализ полученных данных показал, что прочность золошлакобетона в возрасте 180 сут. составляет 116 ...128 % от марочной, а через 1340 сут. — 51 ... 68 % в зависимости от состава, условий приготовления и твердения. Таким образом, вопросы повышения долговечности материалов из отходов являются весьма актуальными.
В 1988—1989 гг. Кузбасским политехническим институтом проводились исследования, подтверждающие возможность применения смеси топливных и доменных шлаков для изготовления тяжелых цементных бетонов классов от В7,5 до В35. Эти бетоны обладают физико-механическими и деформативными характеристиками, не уступающими, а иногда и превышающими соответствующие показатели бетонов на природных материалах. Морозостойкость бетона на шлаковом заполнителе составляет F 100 ... F 400, водонепроницаемость W4...W12, предел прочности при сжатии после пропаривания 16...50 МПа. Шлаковый бетон коррозиестоек в условиях сульфатной агрессии и действия жидкой среды жизнедеятельности животных. Технология изготовления бетона на заполнителе из смеси доменного и топливного шлаков легко вписывается в технологические схемы действующих предприятий строительной индустрии.
Растущий дефицит в строительстве вяжущих веществ, в частности портландцемента, заставил ученых и практиков искать пути снижения его расхода в растворах и бетонах без ухудшения их свойств. Эффективные смешанные вяжущие с использованием местных материальных ресурсов были разработаны в Казанском инженерно-строительном институте. Вяжущие получали путем повторного помола рядовых портландцементов с грубодисперсными минеральными порошками природного и искусственного происхождения, такими, как речной песок, доломитовая и известняковая мука, формовочная смесь, зола ТЭЦ. Механо-химическая активация поверхности цемента и минеральной добавки позволяет повысить прочность портландцемента на 20...24 %. Эффект увеличения прочности может быть усилен введением суперпластификаторов. Цементно-песчаные растворы и мелкозернистые бетоны, полученные на смешанных вяжущих, дали хорошие результаты.
Зола электрофильтров и золошлаковые смеси из отвалов — эффективный компонент сырьевой смеси при производстве портландцементного клинкера для замены глинистого и карбонатного компонентов или как корректирующая добавка.
Известен метод Л. Триефе для получения вяжущего из расплава известняка и золы, резко охлаждаемого водой, который затем подвергается помолу и сушке. Этот метод позволяет уменьшить количество известняка до одной трети, отказаться от глины и известняка при получении цемента.
Одним из главных утилизаторов топливных зол и шлаков являются строители дорог. Наблюдения за опытными участками дорог, построенными в разное время в нашей стране и за рубежом, подтверждают возможность использования золы во всех слоях оснований дорожных одежд для любой транспортной нагрузки. Дорожные одежды с использованием зол и шлаков имеют достаточную прочность, морозостойкость, долговечность. Стабилизированные с помощью цемента и золы, материалы продолжают увеличивать свою прочность с течением времени, а наиболее интенсивное нарастание прочности наблюдается в возрасте 90—120 суток.
На протяжении последних 10 лет изготовлено свыше 100 тыс. м3 дорожных плит, дорожного и газонного бордюра, тротуарной плитки, колец и других изделий на золе сухого удаления и гранулированного шлака, полученных от сжигания каменных углей Львовско-Волынского бассейна. Золошлаковые смеси применялись в качестве активных минеральных добавок, микронаполнителей, заполнителей. Изделия для дорожного строительства изготавливались из бетонов классов В15 ... В35. При этом расход золы на 1 м3 бетона составил 50...100 кг, шлака — 200 ... 400 кг. Наилучшие результаты получены при замене 40 % мелкозернистого песка гранулированным шпаком.
Многочисленные исследования, проведенные в последнее время, говорят о том, что введение в состав бетонов золошлаков кислого состава повышает их стойкость в агрессивных средах.
Большой экономический эффект дает применение топливных золошлаков в качестве вяжущего для стабилизации грунтов.
Необходимо отметить более высокую жесткость бетонных смесей на золошлаке по сравнению с бетонными смесями на традиционных заполнителях, что объясняется высокой адсорбцией золошлаковых смесей, способствующей снижению водоцементного отношения, а следовательно, и удобоукладываемости. Прочность золошлаковых бетонов выше, чем у бетонов на традиционных заполнителях. Это связано со многими причинами: во-первых, снижение водоцементного отношения ведет к повышению плотности, а следовательно, и прочности бетона; во-вторых, сказывается эффект "мелкозернистых порошков"; в-третьих, высокая прочность в поздние сроки твердения объясняется эффектом пуццоланизации, характерным для топливных отходов. По результатам исследований построено несколько участков дорог, устроено основание из укатываемого бетона на золошлаковых смесях.
Таким образом, диапазон применения золошлаковых смесей гидроудаления и зол-уноса ТЭЦ весьма обширен. Результаты научных исследований, опытные работы позволяют сделать вывод о замене некоторых традиционных материалов на отходы промышленности. При этом свойства материалов с использованием зопошлаков не только не уступают традиционным, но в некоторых случаях и превосходят их. Надо сказать, что несмотря на большой объем научных разработок в области использования отходов, в нашей стране отходы используются еще очень cлa6o.
Вопрос №25
Коррозия портлантцементав
СТОЙКОСТЬ ПОРТЛАНДЦЕМЕНТА ПО ОТНОШЕНИЮ К ДЕЙСТВИЮ ВОД, СОДЕРЖАЩИХ АГРЕССИВНЫЕ ВЕЩЕСТВА, Коррозия портландцемента, т. е. разрушение цементного камня в растворах и бетонах, происходит под действием различных агрессивных сред. По предложению проф. В. М. Москвина коррозия портландцементного камня разделена на три вида:
1) разрушение цементного камня пресными проточными водами;
2) разрушение в кислой среде;
3) разрушение минерализованными водами (морская среда).
Разрушение цементного камня в проточной воде происходит при фильтрации воды через поры камня, которая растворяет и вымывает гидроксид кальция из камня, делая последний сильно пористым телом с резким понижением прочности цементной связки в бетоне.
Образование в цементном камне гидроксида кальция - основной сотставляющеи воздушной извести — происходит в результате гидролиза пригидратации C3S и C2S по реакциям:
2(3CaO·SiО2) + 6Н2О = 3CaO·2SiО2·3H2О + 3Ca(OH)2.
2(2CaO·SiО2) + 4Н2О = 3CaO·2SiО2·3H2О + Са(ОН)2.
Если учесть, что в портландцементе суммарное содержание C3S и C2S в среднем колеблется около 60 %, то содержание гидроксида кальция в цементном камне будет составлять около 25 % по массе, т. е. четверть всей массы цементной связки бетона, поэтому и неудивительно, что бетон может в результате выщелачивания прийти в негодность.
Внешне проявление первого вида коррозии заключается в появлении на поверхности бетона белого налета в виде высолов. Профессор В. П. Скрыльников в связи с этим удачно назвал этот вид коррозии - «белая смерть цемента».
Проявление выщелачивания извести из камня можно определить и обработкой поверхности фенолфталеином, в результате чего обработанная поверхность окрасится в малиновый цвет. - Наиболее эффективным способом борьбы с этим видом коррозии является использование для бетонов специальных видов цементов, содержащих активные минеральные добавки, например пуццолановый цемент и др.
Второй вид коррозии может проявляться в различных формах. В виде общекислотной, углекислотной, магнезиальной, органо-кислотной коррозии и коррозии под действием минеральных удобрений. Общим для этого вида разрушений является то, что различные кислоты, вступая во взаимо действие с продуктами гидратации цемента, образуют водорастворимые соли, которые еще легче растворяются и вымываются из цементного камня, чем гидроксид кальция.
Остановимся подробнее на углекислотной коррозии и коррозии от минеральных удобрений как наиболее распространенных и опасных.
Углекислотная коррозия возникает в основном от действия углекислоты воздуха, содержание которой значительно превышает другие виды кислот. При затвердевании бетона до проектной прочности на воздухе углекислота, содержащаяся в воздухе, взаимодействует с гидроксидом кальция, переводя последний в карбонат кальция. То же самое может происходить и в затвердевшем бетоне при эксплуатации в водах, содержащих углекислоту (например, в болотистых или грунтовых). В дальнейшем при изменении концентрации углекислоты в среде работы бетона происходит процесс взаимодействия карбоната кальция с углекислотой по реакции СаСО3 + СО2+Н2О = Са(НСО3)2 с образованием соли кислого углекислого кальция, которая еще легче растворяется и выщелачивается, чем сам гидроксид кальция. Примером такого разрушения бетона может служить случай с малым искусственным дорожным сооружением в Улан-Удэ, пришедшим в негодность после годичной
эксплуатации.
Если учесть, что в бетонах возможно использование и заполнителей из карбонатных пород, то создаются дополнительные условия для образования легкорастворимой соли, и тогда применение только специальных цементов в бетонах не обеспечит надежной защиты от разрушения. Необходимым в этом случае будет дополнительная обработка поверхности бетона водозащитными слоями, например, пропитка битумными или полимерными составами поверхностных слоев бетона, соприкасающихся с агрессивной средой.
Теперь о коррозии под действием минеральных удобрений. Из всех видов минеральных удобрений наиболее вредными являются аммиачные удобрения - аммиачная силитрат и сульфат аммония, которые в своем составе содержат нитрат аммония NH4NO3, который действует на гидроксид кальция по реакции
Са(ОН)2 + 2NH4NO3 + 2Н2О = Ca(NО3)2·4H2О + 2NО3,
образуя нитрит кальция, хорошо растворимый в воде и легко вымываемый
из бетона.
Третий вид коррозии портландцементного камня наблюдается при действии грунтовых вод, содержащих минеральные соли, или в морской воде. Этот вид коррозии часто называют сульфатной коррозией, т. к. морская вода содержит в своем составе обязательное количество сернокислых соединений типа RSO4. Сульфатные соединения вступают в реакции с гидроксидом кальция, образуя сернокислый кальций по уравнению RSО4 + Са(ОН)2 = CaSО4 + R(OH)2.
Сернокислый кальций помимо образования по реакции непосредственно может содержаться как в морских, так и в грунтовых водах. При насыщении пор цементного камня водой, насыщенной сернокислым кальцием, последний вступает во взаимодействие с С3АН6, образуя гидросульфоалюминат кальция по следующей реакции:
3CaSО4 + ЗСаО·А12О3·6Н2О + 25Н2О = 3CaO·Al2О3·3CaSО4·31H2О.
Образуясь в порах цементного камня, это соединение при определенных пределах концентрации переходит в перенасыщенное состояние и начинает выкристаллизовываться: при этом увеличивается в объеме в 3,0-3,5 раза, создает большие давления на стенки пор, разрушает цементный камень. Образующиеся кристаллы гидросульфоалюмината кальция по виду напоминают бациллу, что и дало название этому виду коррозии - «цементная бацилла».
Третий вид коррозии является наиболее опасным, т.к. разрушение бетона происходит сразу по всему объему изделия. Примером разрушения от действия минерализованных вод может служить Баку - Шолларский водопровод протяженностью 182 км, построенный в 1917 г. В результате воздействия грунтовых вод, содержащих большое количество сульфата кальция, 147 км его уже в 1925 г. полностью вышло из строя.
Поскольку причиной разрушения в цементном камне является наличие гидроксида кальция и трехкальциевого гидроалюмината, то, казалось бы, - убрать эти соединения из цемента и этим решится вопрос коррозии сам по себе. Тем не менее, практически этого добиться невозможно, т. к. это повлекло бы за собой полное отсутствие C3S. Поэтому наука пошла по другому пути в борьбе с коррозией, а именно по пути, как указывалось раньше, создания специальных видов цементов, стойких против указанных видов коррозии. К таким цементам относятся пуццолановый и сульфатостойкий портландцементы.
Вопрос № 26