Превращение аустенита в перлит
При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит распад аустенита с содержанием углерода 0,8% на феррит с содержанием 0,01%С и цементит с содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной и образующейся фазе процесс распада носит диффузионный характер.
Рис.33.Схема превращения аустенита в перлит
Рассмотрим превращения переохлажденного аустенита эвтектоидной стали (0,8%С). Образцы нагревают до t ≈ 770ОС, при которой ее структура состоит из однородного аустенита. Затем образцы быстро переносят в термостаты с заданной температурой – ниже А1 (интервал между изотермами 25-30ОС), и в процессе изотермической выдержки наблюдают за происходящими в аустените превращениями.
Процесс превращения аустенита в перлит можно изобразить в виде кинетической кривой превращения в координатах степень превращения – время (рис.34).
В точке а обнаруживается начало превращения. В точке b – превращение заканчивается. Отрезок до точки а – инкубационный период. Отрезок до точки b – время превращения. Максимум скорости превращения соответствует примерно тому времени, когда превратилось ≈ 50% аустенита.
При высокой температуре (малая степень переохлаждения) превращение развивается медленно - продолжительность инкубационного периода и время превращения велики. При увеличении степени переохлаждения (снижении температуры превращения) скорость превращения возрастает. Максимум скорости превращения соответствует температуре t3. Дальнейшее снижение температуры приведет уже к уменьшению скорости превращения.
Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 –5500С.
Рис.34. Кинетика превращения аустенита в перлит
На рис.34а показана серия кинетических кривых, относящихся к разным температурам (разным степеням переохлаждения).
По полученным данным строят диаграмму изотермического превращения переохлажденного аустенита в координатах «температура – логарифм времени»
Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стали. Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-5500C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А1 (5500С), бейнитную область (в интервале t 550 – Мн), и мартенситную область при температуре переохлаждения ниже линии Мн.
С увеличением степени переохлаждения (т.е. чем ниже температура изотермической выдержки) растет число зародышей новых зерен, число феррито-цементитных пластинок увеличивается, а их размеры и расстояния между ними сильно сокращаются. Таким образом, дисперсность образующихся фаз растет.
Перлит, сорбит, троостит представляют собой механические смеси феррита и цементита. Они различаются только по степени дисперсности. При этом повышается их твердость.
При медленном охлаждении со скоростью V1 (вместе с печью) образуется сравнительно грубая пластинчатая смесь – обычный перлит.Твердость по РоквеллуHRC =10; σв= 600 МПа.
При охлаждении на воздухе со скоростью V2 образуется сорбит, который отличается от перлита более тонкодисперсным строением HRC =20; σв= 850 МПа.
При охлаждении в масле со скоростью V3 образуется еще более высокодисперсный троостит,HRC =30; σв= 1100 МПа.
Лучшую пластичность и вязкость, а вместе с тем и прочность, имеет структура сорбита. Стали с сорбитной структурой более износостойкие. Они используются для изготовления нагруженных изделий.
Стали со структурой троостита обладают значительной упругостью и используются для изготовления пружин, рессор.
3.4 Превращение аустенита в мартенсит
При переохлаждении до температуры 200 0С скорость диффузии атомов железа и углерода практически равна нулю, следовательно, при этой температуре скорость превращения переохлажденного аустенита в перлит также равна нулю.
При охлаждении образцов со скоростью выше критической при температуре 240° (линия MН) начинается γ → α превращение. Так как при этих температурах скорость диффузии мала, превращение носит без диффузионный характер и весь углерод, растворенный в решетке аустенита, остается в решетке феррита. В результате образуется пересыщенный твердый раствор внедрения углерода в α-железе – мартенсит. Атомы углерода располагаются на ребре куба элементарной ячейки. При этом ОЦК-решетка сильно искажается, превращаясь из кубической в тетрагональную (рис.35).
Рис.35.Тетрагональная кристаллическая ячейка
Наименьшая скорость охлаждения, необходимая для образования структуры мартенсита называется критической скоростью закалки –Vкр.
Отношение c/a - называется степенью тетрагональности, (c/a¹1).
Мартенсит образуется при резком переохлаждении аустенита ниже температуры начала мартенситного превращения практически мгновенно. Кристаллы имеют форму пластин, в плоскости шлифа под микроскопом структура мартенсита выглядит как отдельные иглы, ориентированные под определенными углами друг к другу (рис.36).
Рис.36.Схема образования мартенсита
Твердость мартенсита зависит от содержания углерода, и максимально составляет величину порядка 60-65 HRC.
Твердость стали, зависит от скорости охлаждения из аустенитной области, определяющей тип структуры. Если проводить охлаждение с малой скоростью, то аустенит будет распадаться на феррито-цементитную смесь пластинчатого строения, которая называется перлитной. С увеличение скорости охлаждения происходит распад аустенита с образованием более дисперсных выделений феррита и цементита так же пластинчатого строения– сорбитс твердостью 250-300НВ и тростит, с твердостью 300-400НВ (рис.38).
Если аустенит переохлаждать до температуры начала мартенситного превращения то, никакого распада на ферито-цементитную смесь не происходит. Аустенит по без дифузионному механизму превращается в мартенсит. Скорость охлаждения касательная к перегибу с-образной кривой называется критической скоростью закалки. Это минимальная скорость охлаждения, при которой аустенит переохлаждается без распада до начала мартенситного превращения. Следовательно, при закалке сплавы необходимо охлаждать со скоростью выше критической.
Рис.37.Диаграмма изотермического распада аустенита
Прямая Mн является границей между верхней и нижней частями диаграммы. Эта прямая характеризует начало мартенситного превращения аустенита
Нижняя часть диаграммы показывает, что для перевода всего остаточного аустенита в мартенсит необходимо понижать температуру стали до линии Mк (конец мартенситного превращения).
Положение точек Mн и Mк зависит от содержания в стали углерода и присутствия легирующих элементов. Оно не зависит от скорости охлаждения. Поэтому на С-образной диаграмме эти линии горизонтальные.
Все легирующие элементы, кроме кобальта, увеличивают устойчивость переохлажденного аустенита. По этому С-образные кривые сдвигаются вправо, в сторону больших времен выдержки. Вместе с тем снижается критическая скорость закалки.
Температурный интервал Mн – Mк (мартенситное превращение) снижается вплоть до отрицательных температур. То же самое наблюдается в присутствии большого количества углерода. При содержании углерода свыше 0,6% Mк находится в области отрицательных температур (рис.38). Например, превращение всего аустенита в мартенсит для эвтектоидной углеродистой стали наступит лишь при температуре -50°.
Рис.38. Влияние содержания углерода на температуру начала и конца мартенситного превращения
Малейшая изотермическая выдержка в интервале температур Mн – Mк приводит к стабилизации аустенита, то есть превращение не доходит до конца, и кроме мартенсита в структуре наблюдается т.н. остаточный аустенит.
Мартенсит – очень твердая и хрупкая структура. Свойства зависят от количества углерода: HRC =55-65,σв= 1600 -2200 МПа.
В интервале температур между перлитным и мартенситным превращениями происходит промежуточное превращение - бейнитное. В отличие от перлитного превращения, протекающего по диффузионному механизму, бейнитное превращение протекает как по диффузионному, так и по без диффузионному (мартенситному) механизму. Поэтому бейнитное превращение иначе называют промежуточным. При таких степенях переохлаждения диффузия атомов возможна, а диффузия атомов железа практически проходить не может. Результатом распада аустенита в бейнитной области является структура бейнита – пересыщенного углеродом феррита, имеющего игольчатое строение. Поэтому бейнит иначе называют игольчатый тростит. В отличие от перлитных структур в бейните повышенное содержание углерода, т.к. при этих температурах диффузионные процессы сильно замедляются, и перераспределение углерода не происходит в полной мере. Различают верхний и нижний бейнит. Верхний бейнит имеет так называемую перистую структуру близкую к троститной, образующейся при переохлаждении несколько ниже перегиба С-образной кривой. Нижний бейнит имеет игольчатое строение близкое к мартенситу. Он образуется при температуре на 50-100оС выше Mн обладает благоприятным сочетанием свойств прочности (σв= 1350 МПа), твердости (HRC =40) и пластичности.