Глава 2. Физические основы радиохимии

Элементарные частицы

За последние несколько десятилетий в физику «вошел» новый материальный мир - мир элементарных частиц.

Элементарными частицами называются мельчайшие составные части материи, которые при современном состоянии знания не могут быть разложены на более мелкие частицы. Некоторые из них были открыты в космических лучах, но большинство было создано искусственно с помощью мощных ускорителей заряженных частиц - главнейшего экспериментального орудия физики элементарных частиц. На протяжении всей истории развития естественных наук ученые искали « кирпичики мироздания», то есть неделимые первичные частицы (элементарные частицы), из различных сочетаний которых построен материальный мир.

На определенном этапе развития науки роль этих частиц довольно успешно выполняли атомы. Однако открытие Дж. Дж. Томсоном в 1895 г. электрона, Х-лучей Рентгеном и радиоактивности развенчало представление об атоме как элементарной частице. После открытия в 1932 г. нейтрона Дж. Чедвиком и создания протонно-нейтронной модели структуры ядра Резерфордом элементарными частицами были признаны электрон, протон и нейтрон.

В настоящее время открыто множество других элементарных частиц. Полный список элементарных частиц и античастиц насчитывает сотни названий. Число их значительно больше, чем число химических элементов в таблице Менделеева. Сейчас уже не подлежит сомнению, что многие частицы сами имеют сложную структуру. Например, протон и нейтрон – составные частицы атомного ядра– построены сами из « более элементарных частиц», тем не менее, исторически сложившееся название «элементарные частицы» продолжает существовать. Трудно сказать, есть ли какой-нибудь критерий «элементарности» данной частицы. Однако элементарные частицы, несомненно, имеют такие общие свойства, которые качественно отличают их от сложных частиц или от макроскопических тел.

К общим свойствам элементарных частиц относятся:

1. У многих элементарных частиц существуют свои двойники (частица и античастица). Они имеют одинаковые значения массы, спина и других характеристик, но отличаются знаком электрического заряда. Например, пары: электрон-позитрон, протон- антипротон.

2. Элементарные частицы способны к аннигиляции, одновременному исчезновению при столкновениях с превращением всей их энергии покоя в энергию других частиц или фотонов. Например, при столкновении электрона с позитроном обе эти частицы исчезают и появляются два фотона, которые обычно разлетаются в разных направлениях,

eˉ + e+ =2 г

3. Основными характеристиками элементарных частиц являются их заряд, масса покоя, механический момент (спин) и магнитный момент; для нестабильных элементарных частиц указываются дополнительно время жизни и тип распада.

Массы покоя всех известных в настоящее время частиц лежат в интервале от 0 до 2600 me (1330 МэВ). Массу покоя обычно выражают в единицах массы покоя электрона me или единицах энергии (МэВ). Масса покоя легчайшей частицы- электрона, эквивалентна энергии 0,52 МэВ, тогда как масса покоя наиболее тяжелых частиц превышает 2·103 МэВ. Обычно массу электрона me принимают за единицу измерения массы покоя всех других частиц.

Все известные элементарные частицы в зависимости от их массы покоя можно разделить на три группы ( таблица 2.1):

1.Частицы с массой покоя m ≤ me называются лептонами.К лептонам относятсяэлектроны, позитроны, нейтрино, мюоны. К лептонам причисляют также фотоны. Масса покоя фотона равна нулю. Электрон и позитрон - самые легкие заряженные частицы. Масса электрона me = 5,48·10-4а.е.м(0,52 МэВ). Все лептоны кроме мюонов абсолютно устойчивы. Самыми тяжелыми лептонами являются мюоны. Мюоны распадаются со средним временем жизни около 2·10П6с на другие лептоны( электроны, позитроны, нейтрино, антинейтрино).

мˉ → eˉ + н̃е + нм

м+ → e+ + не + н̃м,

где не и нм – электронное и мюонное нейтрино, а н̃е и н̃м – электронное и мюонное антинейтрино. Электронные и мюонные нейтрино являются самыми легкими из лептонов. Не имея массы покоя и не взаимодействуя электрическими и ядерными силами с другими частицами, нейтрино обладают исключительной проникающей способностью. Представление о нейтрино было введено итальянским физиком Энрико Ферми в 1934 г. для объяснения кажущейся потери энергии и углового момента при бета- распаде ядер. В 1956 г. впервые удалось зарегистрировать ядерные реакции, обусловленные нейтрино.

Тогда же было установлено, что есть две разновидности нейтрино: электронное и мюонное, и каждое из них отличается от соответствующей античастицы. Первые реакции, вызванные нейтрино были обнаружены с электронными антинейтрино, которые испускаются из активной зоны ядерного реактора при превращении избыточных нейтронов в протоны в осколках деления ядер урана или плутония. При энергии выше 1,8 Мэв антинейтрино попав на протон, может вызвать реакцию обратную бета-распаду

н̃е+ p+ →n + e+

Образовавшиеся позитроны аннигилируют с электронами с образованием двух гамма-квантов, которые при прохождении через сцинтилляторы вызывают две вспышки. Эти вспышки света можно зарегистрировать.

До сих пор не было ни малейшего намека на существование внутренней структуры у лептонов.

2. Частицы с массой покоя me< m < 1000me относятся к мезонам. Мезонами называются все сильно взаимодействующие между собой и нуклонами частицы. Мезоны рождаются при столкновении нуклонов или при распаде «возбужденных» состояний нуклонов. Мезоны сильно различаются по величине внутренней энергии и среднему времени жизни. Например, пионы обладают внутренней энергией от 134,9 до 135,6 Мэв, а среднее время жизни изменяется от 2,6·10-8 с до 1,8·10-16с. Среднее время жизни омега - мезонов составляет 10-22 –10-23 с, внутрення энергия - 783 Мэв.

3. Частицы с массой покоя m >1000me относятся к барионам (адронам). Барионы делятся на две группы: нуклоны смассой покояm≈1836-1839meигипероны,масса которых превышает 2000 me.

К нуклонам относятся протоны и нейтроны. Протон - стабильная частица – представляет собой ядро атома водорода и не изменяет своих свойств во времени. Нейтрон - вне ядра не стабилен и самопроизвольно превращается в протон, электрон и антинейтрино с периодом полураспада 12,5 мин. В атомном ядре нейтроны могут существовать вечно.

Гипероны рождаются при столкновении пионов высокой энергии с нуклонами. Гипероны – более тяжелые частицы, чем нуклоны и взаимодействуют между собой и нуклонами. Среднее время жизни гиперонов 10-10 с. Испуская пионы, гамма-кванты и лептоны они превращаются в протоны. Регистрируют гипероны с помощью пузырьковых камер или в толстых слоях фотоэмульсий. В пузырьковой камере в перегретой жидкости на пути движения заряженной частицы вследствие ионизации образуются пузырьки, фотографируя которые можно фиксировать путь движения частицы. Обычно он составляет 1-2 см.

Мезоны и все барионы (за исключением протонов) являются нестабильными частицами со временем жизни от 10-20 до 2.10-6с.

Таблица 2.1 Элементарные частицы

Группа частиц Элементарные частицы Обозна- чение Заряд Масса покоя (МэВ) Распад Среднее время жизни, с
  Лептоны фотоны г
Нейтрино н <2·10-4
Антинейтрино н̃
Электрон: негатрон позитрон          
eˉ, bˉ e   0.511
e+, b+ e+
  Мюоны м+ e+   105.7 e++ н + н̃   2,20·10-6
мˉ e+ eˉ+ н + н̃
    Мезоны   Пионы р+ e+   139.6 м++ н   2,55·10-8
рˉ e мˉ+ н̃
р0 135.0 1,1·10-16
К- частица Каоны К+ е+   493.8 м++ нm, р+ р0, р+ р+ рˉ 1.24·10-8
К- е-
К Глава 2. Физические основы радиохимии - student2.ru   497.8 р+ рˉ р0 р0 0,89·10-10
К Глава 2. Физические основы радиохимии - student2.ru р Глава 2. Физические основы радиохимии - student2.ru e Глава 2. Физические основы радиохимии - student2.ru n Глава 2. Физические основы радиохимии - student2.ru р Глава 2. Физические основы радиохимии - student2.ru m Глава 2. Физические основы радиохимии - student2.ru nm, р+ рˉ р0 5.2·10-8
    Барионы     Нуклоны Протон р+ e+   938.25
Антипротон рˉ e
Нейтрон n   939.55 р++eˉ+ н̃   1,013·103
Антинейтрон Пn рˉ+ e++ н
    Гипероны Ламда-частица Л0 1115.4 р++ рˉ(65%) n+ р0(35%) 2,4·10-10
    Сигма-частица У+ +e 1189.2 р++ р0(~50%) n+ р+ (~50%) 0,77·10-10
У0 1192.4 Л0+ н <10-11
У ˉ e+ 1197.3 n+ рˉ 1,61·10-10
Кси-частица О ˉ e 1321.0 Л0+ рˉ 1,7·10-10
О0 1314.7 Л0+ р0 2,7·10-10
Омега-частица Щˉ e О+ р Л+Кчаст. 1,3·10-10

В природе процессы рождения элементарных частиц происходят при взаимодействии с веществом быстрых частиц из состава космического излучения или ускоренных искусственно в специальных установках- ускорителях.

Удивительная особенность элементарных частиц состоит в том, что хотя ни одна частица не может считаться построенной из других элементарных частиц, все они способны к взаимным превращениям. Существует всего несколько четко очерченных типов фундаментальных взаимодействий, которым подвержены элементарные частицы: сильное, электромагнитное, слабое и гравитационное взаимодействия. Они, прежде всего, резко отличаются интенсивностью, но для них различны также и радиусы действия и присущие им внутренние симметрии. Любая элементарная частица может рождаться и погибать в результате сильных, электромагнитных и слабых взаимодействийс другими частицами. Самым интенсивным и наиболее симметричным является сильное взаимодействие. Оно лежит в основе ядерных сил, действующих между частицами, входящими в состав атомных ядер,– протонами и нейтронами. Именно оно обусловливает структуру ядра. Частицы, подверженные сильному взаимодействию получили название адронов( греч. «крупный, массивный). Сильное взаимодействие проявляется на очень малых расстояниях, меньше или равном 10-15 м ; на больших расстояниях сильное взаимодействие не проявляется. К группе адроновотносятся входящие в состав ядра протоны и нейтроны, а также большие совокупности мезонов, гиперонов и резонансов. В сильном взаимодействии не участвуют лептоны – группа частиц со спином ½: электрон (е), мюон (м), тау-лептон(ф) и соответствующие нейтрино Глава 2. Физические основы радиохимии - student2.ru , Глава 2. Физические основы радиохимии - student2.ru , Глава 2. Физические основы радиохимии - student2.ru .Фотоны участвуют только в электромагнитных взаимодействиях. Электромагнитному взаимодействию подвержены также все заряженные частицы. По интенсивности оно в сто раз уступает сильному взаимодействию, но зато радиус его действия не ограничен, как радиус сильного взаимодействия.

В последние годы были открыты новые частицы и выдвинуты предположения о существовании некоторых бесструктурных частиц - кварков, из которых возможно, состоят все известные элементарные частицы. Однако обсуждение этих вопросов выходит за рамки настоящей книги.

Наши рекомендации