Размерность параметров уравнения Дарси в разных системах единиц

Таблица 1.2

Параметры уравнения Размерность
СИ СГС НПГ
Объемный дебит, Q м3 / с см3 / с см3 / с
Площадь поперечного сечения фильтра, F м2 см2 см2
Длина фильтра, L м см см
Перепад давления, ∆P Па дн / см2 атм
Вязкость жидкости, µ мПа · с дн · с / см2 спз (сантипуаз)

В системе СИ коэффициент проницаемости измеряется в м2; в системе СГС [kпр] в см2; в системе НПГ (нефтепромысловой геологии) [kпр] в Д (дарси).

1 дарси = 1,02×10-8 см2 = 1,02 · 10-12 м2 = 1,02 мкм2 ≈ 1 мкм2.

Проницаемостью в 1 м2 называется проницаемость пористой среды при фильтрации через образец площадью 1 м2 и длиной 1 м при перепаде давления 1 Па расход жидкости вязкостью 1 Па×с составляет 1 м3/сек.

Пористая среда имеет проницаемость 1 дарси, если при однофазной фильтрации жидкости вязкостью 1 спз (сантипуаз) при ламинарном режиме фильтрации через сечение образца площадью 1 см2 и перепаде давления 1 атм., расход жидкости на 1 см длины породы составляет 1 см3/сек.

Физический смысл размерности проницаемости– это величина площади сечения каналов пористой среды, через которые идет фильтрация.

Приведённые выше уравнения (1.5-1.7) справедливы при условии движения несжимаемой жидкости по линейному закону Дарси.

В случае фильтрации газа это условие не выполняется. При перепаде давления объём газа изменяется, и его объем оценивается по закону Бойля-Мариотта:

При Т = const, P·V = const (1.8)

Средняя скорость фильтрации газа (Vср) при линейной фильтрации оценивается:

Vcр· Pср = Vо ·Pо = V1· P1 = V2 · P2, (1.9)

Pср = (P1 + P2) / 2, (1.10)

Vcр = Vо·Pо / Pср = 2·Vо·Pо / (P1 + P2). (1.11)

Тогда, средний объёмный расход газа будет равен отношению объема газа (Vср) за время (t):

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru . (1.12)

Уравнение для оценки коэффициента проницаемости при линейной фильтрации газа запишется с учетом выражений (1.7) и (1.12):

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru . (1.13)

РАДИАЛЬНАЯ ФИЛЬТРАЦИЯ НЕФТИ И ГАЗА В ПОРИСТОЙ СРЕДЕ

Процесс притока пластовых флюидов из пласта в скважину описывается моделью радиальной фильтрации. В этом случае образец породы представляется в виде цилиндрического кольца с проводящими каналами в осевом направлении (рис. 1.7).

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru

Рис. 1.7. Схема радиального притока жидкости в скважину

Площадь боковой поверхности цилиндра обозначим через (F) и она оценивается как: F=2prh. Таким образом, уравнение Дарси для радиальной фильтрации нефти (пластовой воды) будет иметь следующий вид:

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru . (1.14)

Отсюда, дебит при радиальной фильтрации жидкости:

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru . (1.15)

Таким образом, оценить коэффициент проницаемости при радиальной фильтрации жидкости можно по уравнению (1.16):

Размерность параметров уравнения Дарси в разных системах единиц - student2.ru . (1.16)

А для оценки коэффициента проницаемости при радиальной фильтрации газа выражение запишется соответственно с учетом уравнений (1.13) и (1.15).

Наши рекомендации