Современные представления о механизме вытеснения нефти из пористой среды с применением ПАВ
В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы: межфазное натяжение на границе нефть - вода и поверхностное натяжение на границах вода - порода и нефть - порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-активных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред.
Пленочная нефть может покрывать гидрофобную часть поверхности пор пласта в виде тонкого слоя, либо в виде прилипших капель, удерживаемых силами адгезии Wa. Работа силы адгезии, необходимая для удаления пленочной нефти с единицы поверхности пор в водную фазу, заполняющую поры, определяется уравнением Дюпре
Wa = σ + σвп – σнп, (1.1)
где σ, σвп, σнп - свободная поверхностная энергия границ раздела фаз нефть - вода, вода - порода и нефть - порода соответственно.
Добавка к воде поверхностно-активных веществ приводит к изменению соотношения значений свободной поверхностной энергии благодаря адсорбционным процессам ПАВ на межфазных границах раздела. При этом межфазное натяжение, как правило, уменьшается.
Адсорбция ПАВ на гидрофобных участках поверхности пор, которые могут существовать в результате хемосорбции некоторых компонентов нефти, приводит к снижению ОВП и увеличению АНП в соответствии с правилом ориентации дифильных молекул. Данные обстоятельства и способствуют отделению нефти от поверхности.
На гидрофильных участках поверхности пор адсорбция ПАВ наоборот приводит к увеличению ОВП и снижению АНП, т. е. к непроизводительным потерям ПАВ, и способствует прилипанию капель нефти к этим участкам.
Таким образом, для гидрофобных поверхностей ПАВ должны проявлять высокую поверхностную активность на границе раздела сред нефть - вода и вода - порода и ограничивать адсорбцию на гидрофильных участках поверхности пород.
Капиллярно-удерживаемая нефть в обводненных пластах заполняет пространство в виде капель или участков, разделенных пространством, заполненным водой.
На границах раздела существуют мениски, создающие капиллярное давление
где n - число менисков;
Ri - эффективные радиусы кривизны менисков;
«+» - означает противоположное направление давления выпуклых и вогнутых менисков по отношению к потоку.
В неподвижном состоянии противоположно направленные давления менисков компенсируются. В вытесняющем потоке под действием перепада внешнего давления мениски деформируются по закону упругости так, что возникает составляющая капиллярного давления, направленная противоположно потоку, наблюдается эффект Жамена
pI = Σ2σ (1/Ri - 1/ Rj), (1.3)
где Ri, Rj - эффективные радиусы кривизны выпуклых и вогнутых (к потоку) менисков соответственно.
Основной механизм в процессах добычи нефти с применением ПАВ заключается в снижении поверхностного натяжения на границе раздела вытесняющей и вытесняемой жидкостей до очень низких значений, при которых капиллярно-удерживаемая нефть становится подвижной.
Габер, Мелроуз, Бардон и Лонжерон [[77]] исследовали влияние, так называемого безразмерного капиллярного числа, на снижение остаточной нефтенасыщенности. Капиллярное число выражалось уравнением
К = µв ν/ mt, (1.4)
где µв - динамическая вязкость воды;
ν - линейная скорость фильтрации;
m - пористость;
t - свободная поверхностная энергия границ раздела вода - нефть.
Экспериментально показано, что для достижения значительного снижения остаточной нефтенасыщенности капиллярное число должно быть не менее 10-3. Для сравнения заметим, что при обычном заводнении указанный параметр имеет значение 10-6. Следовательно, значение поверхностного натяжения должно быть снижено в 1000 раз, чтобы увеличить значения капиллярного числа до 10-3.
В работах [77, [78]] отмечено, что состояние глобул нефти в поровом пространстве определяет критическое значение фильтрационных параметров, равное Δр r / 2σ, здесь Δр - перепад давлений; r - радиус канала фильтрации; σ - поверхностное натяжение. При значениях Δр r / 2σ ниже критических глобул нефть сохраняет равновесный размер и не может быть вытеснена из поры. Для эффективного вытеснения нефти необходимо превышение критического значения градиента давления или уменьшение поверхностного натяжения. Анализ уравнения Лапласа для глобулы нефти, содержащейся в единой поре, показал, что падение давления вдоль поры напрямую зависит от геометрии поры, поверхностного натяжения и фильности породы.
Для вытеснения нефти из гидрофобного коллектора требуется достижение либо большего перепада давления, чем для гидрофильного, либо большего снижения поверхностного натяжения. В зависимости от природы нефтенасыщенного порового пространства требуется достижение различных значений межфазного натяжения. В работе [78] приведены результаты расчетов, выполненные В. В. Суриной. Так, для гидрофобного карбонатного коллектора межфазное натяжение равно 0,002 мН/м, для гидрофильного — 0,974 мН/м, а для терригенного гидрофильного коллектора — 0,0825 мН/м.
Итак, достижение заметного увеличения коэффициента вытеснения нефти за счет снижения межфазного натяжения с применением доступных промышленных ПАВ возможно в гидрофильных карбонатных коллекторах.
Смачивающую способность ПАВ общепринято оценивать значением краевого угла избирательного смачивания. Однако более строгим критерием смачивающей способности ПАВ является энергия взаимодействия нефти с поверхностью породы, определяемая как работа адгезии нефти
W= σ (l - cos θ), (1.5)
где σ - межфазное натяжение на границе раздела нефть - водная фаза;
θ - краевой угол избирательного смачивания.
Чем меньше краевой угол избирательной смачиваемости, тем выше работа адгезии нефти и, следовательно, лучше смачивающая способность ПАВ.
Изменение смачиваемости зависит от химического состава породы, первоначального состояния поверхности и от массового соотношения гидрофильно-липофильного баланса [[79]]. По характеристике смачиваемости карбонатные породы более гидрофобны, чем терригенные, что связано с ионным типом связей в кристаллической решетке, способствующих активному взаимодействию полярных компонентов нефти с породой и ее гидрофобизации [[80], [81], [82]]. При этом углы смачивания данных пород достигают 140-150°. Изменение смачиваемости твердой поверхности с гидрофобной на гидрофильную для карбонатных пород способствует улучшению отрыва пленок и капель нефти, увеличению их подвижности, активизации капиллярного впитывания.
При вытеснении нефти растворами ПАВ последние могут диффундировать в значительных количествах в нефть. ПАВ адсорбируются асфальтенами нефти. Дисперсность асфальтенов меняется, в результате изменяются реологические свойства нефти. Контактируя в пористой среде с нефтью, ПАВ способны переходить в нефть и существенно изменять ее свойства. Впервые в работах В. В. Девликамова и его учеников сообщалось о диффузии в нефть ПАВ из водных растворов. Диффузию ионогенных ПАВ заметить не удалось.
Экспериментально В. В. Девликамовым и его учениками [[83],[84].] изучалась диффузия ПАВ ОП-10 из водных растворов в нефть, содержащую 4 % асфальтенов и 14 % силикогелевых смол. Установлено, что в статических условиях, при длительном контакте одних и тех же навесок ПАВ и нефти, коэффициент распределения ПАВ превысил 2 через 100 ч. В динамических условиях (т. е. раствор ПАВ заменялся через 24 ч) за 500 ч содержание ПАВ в нефти в 3 раза превысило его концентрацию в водном растворе.
Хорошо известно, что в состав нефти входят углеводороды - парафины и различные комплексные соединения, такие как смолы, асфальтены, оказывающие сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. Течение таких жидкостей не подчиняется закону Ньютона и их принято называть аномальными.
Теми же авторами в работе [[85]] изучалось влияние ПАВ на аномалии вязкости нефтей. Ими было определено влияние на реологические параметры нефти нефтерастворимых ПАВ типов ОП-4, «Серапол-29», «Стеарокс-4», Неонол. Установлено, что аномалии вязкости нефти уменьшают нефтеотдачу пластов, способствуют образованию застойных зон и зон малоподвижной нефти, где фактические градиенты пластового давления оказываются меньшими или сравнимыми с градиентами динамического давления сдвига.
Из рассмотренного следует, что при вытеснении нефти водными растворами НПАВ часть активного вещества переходит в нефть. В результате этого происходит подавление аномалий вязкости нефти, приводящее к увеличению коэффициента вытеснения нефти из пористой среды.