Потери на электропроводность

Оглавление

Диэлектрики. 4

Свойства диэлектриков. 4

Поляризация диэлектриков. 13

Диэлектрические потери. 16

Потери на электропроводность. 16

Релаксационные потери. 17

Зависимость Потери на электропроводность - student2.ruот частоты.. 17

Зависимость Потери на электропроводность - student2.ruполярных диэлектриков от температуры.. 17

Зависимость Потери на электропроводность - student2.ruот напряжения. 18

Зависимость Потери на электропроводность - student2.ruот влажности. 18

Электропроводимость диэлектриков. 19

Электропроводность газов. 19

Электропроводность жидкостей. 20

Электропроводность твёрдых тел. 21

Поверхностная электропроводность. 22

Пробой диэлектриков. 23

Виды пробоя твердых диэлектриков. 24

Нагревостойкость диэлектриков. 27

Трансформаторное масло. 29

Полиэтилен. 33

Поливинилхлорид. 35

Политетрафторэтилен. 37

Эпоксидная смола. 38

Лакоткани. 40

Электрокартон. 41

Пластические массы.. 42

Слоистые пластики. 45

Стекловолокно. 50

Миканиты.. 53

Фарфор. 54

Проводники. 56

Свойства проводников. 56

Медь. 58

Алюминий. 62

Сплавы высокого сопротивления. 64

Вольфрам.. 65

Полупроводники. 67

Свойства полупроводников. 67

Полупроводниковые материалы.. 69

Основные полупроводниковые материалы.. 77

Магнитные материалы.. 79

Свойства магнитных материалов. 79

Электротехническая сталь. 87

Пермаллой и альсифер. 88

Ферриты.. 89

Список литературы.. 92

Диэлектрики

Свойства диэлектриков

Диэлектриками называют вещества, у которых валентная зона отделена от зоны проводимости широкой зоной запрещенных энергией. Важнейшими твердыми диэлектриками являются керамика, полимеры и стекло. В них преобладает ионный или ковалентный тип связи, нет свободных носителей зарядов. Их удельное электрическое сопротивление равно Потери на электропроводность - student2.ru . Электрические свойства диэлектрика определяют область его применения; при этом принимаются во внимание механические свойства материала, его химическая стойкость и другие параметры. Характерной особенностью диэлектрика является способность поляризоваться в электрическом поле. Сущность поляризации заключается в смещении связанных электрических зарядов под действием поля. Смещенные заряды создают собственное внутреннее электрическое поле, которое направлено противоположно внешнему. Мерой поляризации является диэлектрическая проницаемость Потери на электропроводность - student2.ru . Она оценивается отношением емкостей Потери на электропроводность - student2.ru конденсатора. Емкость Потери на электропроводность - student2.ru определяется, когда между пластинами конденсатора находится диэлектрик, а емкость Потери на электропроводность - student2.ru - когда вместо диэлектрика — вакуум. В твердом диэлектрике одновременно проявляется несколько видов поляризации, которые в сумме определяют величину Потери на электропроводность - student2.ru и ее зависимость от температуры и частоты поля. Конструкционные диэлектрики общего назначения имеют небольшое значение Потери на электропроводность - student2.ru — до Потери на электропроводность - student2.ru . Диэлектрики, которые используются в конденсаторах, должны иметь высокие значения Потери на электропроводность - student2.ru , чтобы увеличить емкость конденсатора. У конденсаторных диэлектриков Потери на электропроводность - student2.ru меняется от Потери на электропроводность - student2.ru до Потери на электропроводность - student2.ru .

Наиболее важными видами поляризации являются электронная, ионная, дипольно - релаксационная и самопроизвольная (спонтанная).

Электронная поляризация вызывается деформацией электронных оболочек атомов. Электроны смещаются почти мгновенно, время установления поляризации ничтожно мало, и поэтому она не зависит от частоты.

Ионная поляризация возникает при упругом смещении ионов на расстояния, не превышающие межионные. Отрицательные ионы смещаются в сторону положительного электрода, а положительные ионы — в сторону отрицательного. Время установления ионной поляризации очень мало ( Потери на электропроводность - student2.ru ), и Потери на электропроводность - student2.ru также не зависит от частоты.

Дипольно-релаксационная поляризация проявляется в полярных диэлектриках. Повороты диполей существенно меняют Потери на электропроводность - student2.ru . У неполярных диэлектриков Потери на электропроводность - student2.ru немного больше Потери на электропроводность - student2.ru , у полярных — в несколько раз больше. Повороты диполей при наложении поля и возвращение диполей к неупорядоченному состоянию после снятия поля требуют преодоления некоторого сопротивления молекулярных сил. Эта поляризация появляется и исчезает значительно медленнее электронной или ионной поляризации.

При нагреве диэлектрическая проницаемость Потери на электропроводность - student2.ru изменяется, температурный коэффициент Потери на электропроводность - student2.ru (ТК Потери на электропроводность - student2.ru ) принимает значения от Потери на электропроводность - student2.ru до Потери на электропроводность - student2.ru .Отрицательный ТК Потери на электропроводность - student2.ru имеют диэлектрики с электронной поляризацией, при нагреве увеличивается их объем и соответственно уменьшается плотность зарядов. Диэлектрики с ионной поляризацией имеют положительный ТК Потери на электропроводность - student2.ru . При нагреве поляризация увеличивается вплоть до верхней границы рабочего интервала температур. Это объясняется ослаблением притяжения между ионами и увеличением их смещения. Особенно сильно повышается поляризация, когда ионы начинают смещаться на расстояния больше межионных. В этом случае поляризация зависит от частоты, устанавливается медленно — за Потери на электропроводность - student2.ru и называется ионно-релаксационной.

Изменения дипольно-релаксационной поляризации при нагреве определяются соотношением межмолекулярного притяжения и теплового движения. Ослабление притяжения облегчает ориентацию диполей, а усиление теплового движения ей мешает. В связи с этим поляризация сначала увеличивается до некоторого максимума, а затем уменьшается.

Самопроизвольная поляризация наблюдается только у одного класса диэлектриков — сегнетоэлектриков. При охлаждении сегнетоэлектрика ниже определенной температуры, которую называют точкой Кюри, самопроизвольно, без внешних воздействий, возникает поляризация. Объем сегнетоэлектрика разбивается на домены, в каждом из которых вещество сильно поляризовано. В отсутствие поля домены расположены беспорядочно, и суммарная поляризация равна нулю. При наложении поля поляризация увеличивается нелинейно благодаря переориентации поляризации доменов. При циклическом изменении поля от Потери на электропроводность - student2.ru до Потери на электропроводность - student2.ru возникает петля гистерезиса (рис. 1).

Потери на электропроводность - student2.ru
а) б)
Рис. 1. Зависимость поляризации Потери на электропроводность - student2.ru (а) и диэлектрической проницаемости Потери на электропроводность - student2.ru (б) сегнетоэлектрика от напряженности поля Потери на электропроводность - student2.ru .

Когда напряженность поля возрастает, поляризация достигает насыщения; при этом Потери на электропроводность - student2.ru увеличивается до максимального значения и вновь уменьшается. По аналогии с ферромагнетиками напряженность поля Потери на электропроводность - student2.ru , при которой меняется направление поляризации, называется коэрцитивной силой. Когда Потери на электропроводность - student2.ru , сегнетоэлектрик является мягким; когда Потери на электропроводность - student2.ru , материал жесткий. Известно около Потери на электропроводность - student2.ru сегнетоэлектриков. Они принадлежат к классу активных диэлектриков, которые используются для генерации и преобразования электрических сигналов. Между электрическими, механическими, тепловыми и другими свойствами сегнетоэлектриков существуют нелинейные зависимости. Значения свойств вблизи точки Кюри имеют максимумы или минимумы. В частности, максимальное значение Потери на электропроводность - student2.ru достигается около точки Кюри.

Электропроводимость твердых диэлектриков связана с появлением в них свободных ионов или электронов. Основное значение имеет ионная проводимость, обусловленная примесями.

Электропроводимость диэлектрика подразделяют на объемную (сквозную) и поверхностную. Каждая из них характеризуется своим удельным электрическим сопротивлением - объемным Потери на электропроводность - student2.ru и по поверхностным Потери на электропроводность - student2.ru .

Диэлектрики имеют высокое удельное объемное электрическое сопротивление Потери на электропроводность - student2.ru . При нагреве оно понижается в результате роста подвижности ионов.

Поверхностное электрическое сопротивление Потери на электропроводность - student2.ru зависит как от состава и структуры диэлектрика, так и состояния его поверхности и влажности среды. Загрязнения и влага на шероховатой или пористой поверхности образуют проводящую пленку, диэлектрик может полностью утратить изоляционные свойства, хотя его объемное электрическое сопротивление при этом останется высоким. Для повышения поверхностного электрического сопротивления поверхность изделий стремятся сохранить чистой и гладкой, используя для этого покрытия - лаки и эмали. Поверхностное электрическое сопротивление Потери на электропроводность - student2.ru зависит как от состава и структуры диэлектрика, так и состояния его поверхности и влажности среды. Загрязнения и влага на шероховатой или пористой поверхности образуют проводящую пленку, диэлектрик может полностью утратить изоляционные свойства, хотя его объемное электрическое сопротивление при этом останется высоким. Для повышения поверхностного электрического сопротивления поверхность изделий стремятся сохранить чистой и гладкой, используя для этого покрытия — лаки и эмали.

Диэлектрические потери представляют собой часть энергии электрического поля, которая превращается в диэлектрике в теплоту и нагревает его. При частотах свыше Потери на электропроводность - student2.ru величина потерь становится одним из самых важных параметров диэлектрика.

Для определения потерь диэлектрик удобно рассматривать как конденсатор в цепи переменного тока (рис. 2).

Потери на электропроводность - student2.ru
Рис. 2. Векторные диаграммы идеального (а) и реального (б) диэлектриков.

У идеального конденсатора угол сдвига фаз между током Потери на электропроводность - student2.ru и напряжением Потери на электропроводность - student2.ru равен Потери на электропроводность - student2.ru , поэтому активная мощность Потери на электропроводность - student2.ru равна нулю. Диэлектрик не является идеальным конденсатором, и угол сдвига фаз у него меньше Потери на электропроводность - student2.ru на угол Потери на электропроводность - student2.ru . Этот угол называют углом диэлектрических потерь. Тангенс угла Потери на электропроводность - student2.ru и диэлектрическая постоянная Потери на электропроводность - student2.ru характеризуют удельные потери (на единицу объема диэлектрика), Потери на электропроводность - student2.ru :

Потери на электропроводность - student2.ru ,

где k — коэффициент; Е — напряженность электрического поля, В/м; f — час­тота поля, Гц.

Произведение Потери на электропроводность - student2.ru Потери на электропроводность - student2.ru называют коэффициентом диэлектрических потерь. По величине Потери на электропроводность - student2.ru диэлектрики подразделяют на низкочастотные ( Потери на электропроводность - student2.ru ) и высокочастотные ( Потери на электропроводность - student2.ru ). К основным источникам потерь диэлектрика относятся его поляризация и электропроводимость, ионизация газов в имеющихся порах и неоднородность структуры из-за примесей и включений.

Электрическая прочность характеризуется сопротивлением пробою. Пробой — это необратимое разрушение твердого диэлектрика под действием поля и потеря изолирующих свойств. Электрической прочностью или пробивной напряженностью Епр называется отношение пробивного напряжения Unp к толщине диэлектрика в месте пробоя. Различают три вида пробоя: электрический, тепловой и электромеханический.

Электрический пробой возникает вследствие ударной ионизации нарастающей лавиной электронов. Пробой наступает почти мгновенно (за Потери на электропроводность - student2.ru с) под действием поля большой напряженности (свыше 1 000 МВ/м) независимо от нагрева диэлектрика. Обычно диэлектрик пробивается при включении напряжения или при его резком скачке.

Тепловой пробой наступает при комбинированном воздействии поля и нагрева, причем пробивная напряженность Епр из-за повышения температуры диэлектрика снижается. Чем лучше отвод теплоты в окружающую среду, тем ниже температура диэлектрика и выше Епр. Тепловой пробой ускоряется при повышении частоты (так как при этом возрастают потери) и замедлении теплоотвода.

Электрохимический пробой наступает при длительном действии поля, сопровождающемся необратимыми изменениями в структуре диэлектрика и понижением его электрической прочности.

По химическому составу диэлектрики разделяют на органические и неорганические. К органическим относятся полимеры, резина, шелк; к неорганическим — слюда, керамика, стекло, ситаллы.

По электрическим свойствам диэлектрики подразделяют на низкочастотные (электротехнические) и высокочастотные (радиотехнические).

Для электроизоляционных материалов решающее значение имеет их нагревостойкость, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По нагревостойкости диэлектрики разделяют на семь классов, обозначенных Y, А, Е, В, F, Н, С. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90° С. Самыми нагревостойкими являются материалы класса С — слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180° С и выше.

Большое влияние на свойства диэлектриков оказывают гигроскопичность и влагопроницаемость. Образование токопроводящих пленок на поверхности и в толще изделий понижает изолирующую способность и может закончиться пробоем. Наиболее гигроскопичны материалы с порами и капиллярами на поверхности — бумага, обычная пористая керамика, слоистые пластики. Проницаемость для водяных паров исключительно важна для пропиточных, заливочных и других защитных материалов. Диаметр молекулы равен всего Потери на электропроводность - student2.ru , и водяной пар проходит сквозь мельчайшие поры. Плотные, непористые материалы не пропускают водяные пары и негигроскопичны. К ним относятся ситаллы, малощелочное стекло, вакуумно-плотная керамика, эпоксидные пластмассы и неполярные полимеры. Для изделий из гигроскопичных диэлектриков используют пропитку, защищают поверхности лаками, глазурью и т.п.

Прочность диэлектриков и особенности их механических свойств являются дополнительным критерием выбора материалов. Керамика, стекло и ситаллы — наиболее прочные диэлектрики. Характерной особенностью этих материалов является хрупкость; их прочности на изгиб. Предел прочности на изгиб равен 30-300 МПа, увеличиваясь до 500 МПа у ряда ситаллов. Для хрупких диэлектриков исключительно важно учитывать тепловое расширение, особенно когда речь идет о работе в условиях быстрых смен температуры или о соединении диэлектриков с металлами. Температурный коэффициент линейного расширения керамики и тугоплавкого стекла не превышают Потери на электропроводность - student2.ru , у легкоплавких стекол он равен Потери на электропроводность - student2.ru , а у ситаллов в зависимости от химического состава — Потери на электропроводность - student2.ru . Особенно велико тепловое тепловое расширение органических диэлектриков, но в пластмассах с неорганическими наполнителями оно примерно такое же, как у металлических сплавов. Кроме того, органические диэлектрики достаточно пластичны, для них термические напряжения не столь опасны.

Стабильность структуры и свойств диэлектриков определяет сроки их эксплуатации. Наибольшую стабильность имеют керамика и ситаллы, в стеклах под влиянием поля мигрируют ионы щелочных металлов и образуются электропроводящие мостики. Добавки РbО и BaO увеличивают стойкость стекла. Против электрохимического пробоя, связанного с миграцией ионов щелочных металлов. Органические диэлектрики разрушаются при комбинированном действии нагрева, окисления на воздухе и ионизации, поэтому их срок службы меньше, чем у керамики или стекла. Большинство пластмасс под действием разрядов обугливается и теряет изолирующую способность. Этого недостатка лишены полистирол, органическое стекло, фторопласты и кремнийорганические пластики. Среди диэлектриков самыми важными являются керамические материалы и особенно сегнетокерамика. Керамика имеет наиболее разнообразные электрические свойства, почти не подвержена старению и устойчива к нагреву.

Установочная керамика применяется для изготовления изоляторов, колодок, плат, каркасов, катушек и т.п. Она должна иметь низкие потери, хорошие электроизоляционные свойства и прочность.

Для работы при низких частотах используют электрофарфор, который дешев и имеет неплохие электрические свойства. Его недостатки — большие потери, резко возрастающие при нагреве выше 200° С, и низкая механическая прочность. Недостатки электрофарфора объясняются действием стекла, которого в нем содержится довольно много.

Основным материалом, используемым для изготовления деталей, предназначенных для работы при высоких частотах, является стеатит, который получают из талька. Стеатиты не содержат вредных примесей, их свойства стабильны до 100° С. Они легко прессуются, при обжиге дают усадку всего 1-2 % и используются для деталей с плотной и пористой структурой и точными размерами. В отличие от других видов керамики стеатит удовлетворительно режется. Недостатки стеатита — растрескивание при быстрых сменах температуры и трудность обжига.

Поляризация диэлектриков

Поляризация диэлектриков — ограниченное смещение связанных зарядов или ориентации дипольных молекул. В результат процесса поляризации на поверхностях диэлектрика образуются заряды разных знаков. Большинство диэлектриков характеризуются линейной зависимостью электрического смещения от величины напряженности электрического поля, созданного в диэлектрике.

Сегнетоэлектрики — диэлектрики, в которых смещение напряженности поля величина смещения меняется нелинейно, обнаруживается насыщение при некотором значении напряженности поля.

Одной из важнейших характеристик диэлектрика, имеющий особое значение для техники является его относительная диэлектрическая проницаемость Потери на электропроводность - student2.ru :

Потери на электропроводность - student2.ru

Эта величина представляет собой отношение заряда Q, полученного при некотором напряжении на конденсаторе, изготовленном из данного диэлектрика, к заряду Потери на электропроводность - student2.ru , который может получиться в конденсаторе тех же размеров и при том же напряжении, если бы между электродами находился вакуум.

Из выражения следует, что относительная диэлектрическая проницаемость любого вещества больше единицы и бывает равной единице только в случае вакуума.

Потери на электропроводность - student2.ru

Видно, что диэлектрическую проницаемость вещества Потери на электропроводность - student2.ru можно определить как отношение емкости конденсатора с диэлектриками из данного вещества и емкости конденсатора тех же размеров, диэлектриком которого является вакуум.

Первый вид — поляризация, совершающаяся в диэлектрики под воздействием электрического поля практически мгновенно, вполне упруго, без рассеяния энергии, т.е. без выделения тепла.

Второй вид — не совершается мгновенно, а нарастает и убывает замедленно и сопровождается рассеянием энергии в диэлектрике, т.е. его нагреванием. Такой вид поляризации называют релаксационной поляризацией.

К первому виду относятся электронная и ионная, остальные механизмы поляризации принадлежат к релаксационной поляризации.

Особым механизмом поляризации являются резонансная, наблюдающаяся в диэлектриках при световых частотах, а потому мало существенная для практической электроники.

Электронная поляризация представляет собой упругое смещение к деформации электронных оболочек атомов и ионов. Время установления очень мало (около Потери на электропроводность - student2.ru ) поэтому называют мгновенным.

Поляризуемость частицы не зависит от температуры, однако электронная поляризация вещества уменьшается с повышением температуры, в связи с тепловым расширением диэлектрика и уменьшением числа частиц в единицы объема. Изменение диэлектрической проницаемости диэлектрика с электронной поляризацией при изменении температуры обуславливается только изменением его плотности.

Электронная поляризация наблюдается для всех видов диэлектриков и не связанна с потерей энергии.

Ионная поляризация характерна для твердых тел с ионным строением и обуславливается смещением упруго связанных ионов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, из-за увеличения расстояния между ними при тепловом расширении, и в большинстве случаев температурный коэффициент диэлектрической проницаемости ионных диэлектриков остается положительным.

Дипольно-релаксационная поляризация связанна с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации.

Эта поляризация связанна с потерей энергии. В вязких жидкостях сопротивление поворотам молекул настолько велико, что при быстропеременных полях диполи не успевают ориентироваться в направлении поля и дипольно-релаксационная поляризация уменьшается с увеличением частоты приложенного напряжения.

Время релаксации — промежуток времени в течение которого упорядоченность ориентируемых полем ионов или диполей, после снятия поля уменьшается, вследствие, наличия теплового движения в 2,7 раза от первоначального значения.

Дипольно-релаксационная поляризация свойственна полярным газам и жидкостям; этот вид поляризации может наблюдаться также и в твердых полярных органических веществах, но в этом случае, поляризация обычно обусловлена уже не поворотом самой молекулы, а поворотом имеющихся в ней полярных радикалов по отношению к молекуле. Такой вид поляризации называется также дипольно-релаксационной поляризацией.

Ионно-релаксационная поляризация наблюдается в неорганических стеклах и в кристаллах с неплотной упаковкой ионов. Величина ионно-релаксационной поляризации с температурой возрастает.

Диэлектрические потери

Диэлектрическими потерями называют электрическую мощность, рассеиваемую в изоляции под действием приложенного к ней напряжения. Эта мощность рассеивается в изоляции, превращаясь в тепло.

Можно выделить следующие основные виды диэлектрических потерь: потери на электропроводность — характерны для всех без исключения диэлектриков. Наблюдаются при постоянном и переменном напряжении. В однородных неполярных диэлектриках являются единственным видом потерь.

Релаксационные потери — обусловливаются поляризацией диэлектриков. Вызываются активными составляющими абсорбционных токов замедленных поляризаций.

Потери, обусловленные неоднородностью — вызывается проводящими и газовыми включениями, слоистостью и т.п. Эти потери являются дополнительными релаксационными потерями. Наиболее часто они проявляются в виде потерь, обусловленных миграционной поляризацией, характерной в основном для композиционных и слоистых диэлектриков.

Ионизационные потери, возникают в диэлектриках, содержащих поры или газовые включения.

Резонансные потери, характерны для частот, совпадающих с собственными частотами колебаний электронов и ионов.

Потери на электропроводность

Протекание сквозного тока через диэлектрик, как в постоянном, так и в переменном электрическом поле приводит к диэлектрическим потерям на электропроводность. Потери сквозной электропроводности будут единственным видом потерь в однородном неполярном диэлектрике.

Релаксационные потери

Отметим, что потери релаксационного характера могут наблюдаться не только в полярных диэлектриках, но и в неполярных, например при наличии пористой или слоистой структуры, когда становится возможна ионизация газовых включений, накопление объемных зарядов и др.

Появление абсорбционных токов в полярных диэлектриках под действием внешнего поля, наряду с неоднородностью, обусловлено, главным образом, ориентацией полярных молекул.

В вязких жидкостях полярные молекулы - диполи, ориентируясь во внешнем поле, преодолевают силы внутреннего трения (вязкость) в результате чего часть электрической энергии превращается в тепло. В твердых диэлектриках релаксационные потери вызываются как процессами установления дипольной поляризации, так и поляризацией, определяемой слабосвязанными ионами.

Зависимость от частоты

Зависимость tgПотери на электропроводность - student2.ruот частоты для релаксационных поляризаций имеет наибольшую физическую ясность для вязких полярных жидкостей, в которых дипольные молекулы могут сравнительно свободно вращаться друг относительно друга, преодолевая силы вязкого трения. С ростом частоты tgПотери на электропроводность - student2.ruуменьшается. Если в диэлектрике заметны потери сквозной проводимости, то они, в соответствии с выражением tgПотери на электропроводность - student2.ru=1/RC , уменьшаются с ростом частоты.

Наши рекомендации